首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   404篇
  免费   44篇
  国内免费   54篇
化学   124篇
晶体学   3篇
力学   1篇
数学   1篇
物理学   373篇
  2023年   3篇
  2022年   7篇
  2021年   12篇
  2020年   4篇
  2019年   9篇
  2018年   12篇
  2017年   14篇
  2016年   20篇
  2015年   14篇
  2014年   24篇
  2013年   16篇
  2012年   18篇
  2011年   56篇
  2010年   22篇
  2009年   42篇
  2008年   36篇
  2007年   54篇
  2006年   32篇
  2005年   20篇
  2004年   19篇
  2003年   15篇
  2002年   12篇
  2001年   9篇
  2000年   5篇
  1999年   12篇
  1998年   5篇
  1997年   1篇
  1996年   2篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
排序方式: 共有502条查询结果,搜索用时 359 毫秒
1.
In this paper, integration of interference phenomenon into femtosecond laser micromachining was reported as the femtosecond laser pulses were reshaped spatially to perform ablation. The generation of circular interference pattern was demonstrated by overlapping infrared femtosecond laser pulses. The interference pattern was subsequently focused on a copper substrate to ablate microstructures of concentric circular rings. The present technique is expected to open up new applications in the areas of rapid fabrication of micro-Fresnel lenses, hybrid microlenses and lens arrays.  相似文献   
2.
We study the time of flight optical emission from titanium and tungsten nanosized particles, generated through femtosecond laser-matter interaction in vacuum, in the wavelength spectral range from 300 to 900 nm. Typical spectra consist of broadband structureless signals similar to black body emission from a macroscopic object. Nanoparticles temperature, deduced from their emission spectra, decreases drastically as a function of their time of arrival at a given distance from the target. This behaviour is seen to be independent of individual particle velocities.  相似文献   
3.
硅光电二极管激光损伤阈值随激光脉宽的变化   总被引:4,自引:0,他引:4       下载免费PDF全文
 对飞秒激光辐照下硅光电二极管损伤阈值进行了实验测量,对从1s到60fs不同脉宽激光辐照下硅光电二极管损伤阈值进行了讨论。实验数据表明,在1s到10ns脉宽范围内损伤所需能量密度近似而非严格地与脉宽的平方根成正比。信号分析表明硅光电二极管的损伤主要由热效应造成,而60fs激光辐照下的损伤阈值为0.1J/cm2,明显偏离普通温度分布预言的趋势。  相似文献   
4.
Biomolecules very often present complex energy deactivation networks with overlapping electronic absorption bands, making their study a difficult task. This can be especially true in transient absorption spectroscopy when signals from bleach, excited state absorption and stimulated emission contribute to the signal. However, quantum control spectroscopy can be used to discriminate specific electronic states of interest by applying specifically designed laser pulses. Recently, we have shown the control of energy flow in bacterial light-harvesting using shaped pump pulses in the visible and the selective population of pathways in carotenoids using an additional depletion pulse in the transient absorption technique. Here, we apply a closed-loop optimization approach to β-carotene using a spatial light modulator to decipher the energy flow network after a multiphoton excitation with a shaped ultrashort pulse in the near-IR. After excitation, two overlapping bands were detected and identified as the S1 state and the first triplet state T1. Using the transient absorption signal at a specific probe delay as feedback, the triplet signal could be optimized over the singlet contribution.  相似文献   
5.
The structure and evolution of the laser-induced vapor plume and shockwave were measured from femtosecond time resolved shadowgraph images. By changing the wavelength of the probe beam (400 and 800 nm), differences in the opacity of the vapor plume were measured as a function of delay time from the ablation laser pulse. The evolution of the temperature and electron number density during and after the ablation laser pulse were determined and compared for ablation in argon and helium background gases. A laser supported detonation wave (LSD) observed for ablation in argon, blocks the incoming laser energy and generates a high-pressure region above the vapor plume.  相似文献   
6.
The time-resolved secondary emission of resonantly created excitons in GaAs quantum wells is studied using femtosecond up-conversion spectroscopy. The behaviour of the rise and decay of the secondary emission and reflectivity in quantum wells is strongly dependent upon the disorder at the interfaces, the exciton density and the temperature. In the case of low densities and temperatures the emission is independent of the exciton density and rises quadratically in time, in excellent agreement with recent theory for Rayleigh scattering from two-dimensional excitons subjected to disorder. These rise times are compared directly with times measured by time-integrated four-wave mixing (FWM). The comparison of the dynamics displayed in time-resolved secondary radiation and time-integrated FWM provide a clear understanding of the coherence properties of QW excitons in the first few picoseconds after excitation. High-contrast oscillations that are due to quantum beats between the heavy- and light-hole 1s-states are seen. The visibility decay at very low densities is long ps and is related to the action of potential fluctuations on the scattering of heavy-hole and light-hole excitons.  相似文献   
7.
Relative mass transport efficiencies of near infrared (λ = 795 nm) femtosecond laser generated brass aerosols in helium were measured by ICP-MS applying different ablation cells with short and long washout times. It was found that the transport efficiencies are independent of the cell used within the mutual experimental uncertainties. This finding was confirmed by additional measurements providing the absolute particle mass transport efficiencies of femtosecond laser ablation in He. Here, the transport efficiencies were determined by weighing the samples before and after ablation with a micro-balance, collecting the particles by low-pressure impaction, and evaluating the impacted masses quantitatively by total reflection X-ray fluorescence. Within the experimental uncertainties (± 9–19%) the same absolute transport efficiency (about 77%) was found for all cells applied. This efficiency value can be regarded as a lower limit of the absolute mass transport efficiency since mass losses in the impactor are difficult to quantify.  相似文献   
8.
《印度化学会志》2021,98(9):100122
Salophen is a weakly fluorescent Schiff base which forms emissive co-ordination complexes with Zn2+ and Al3+. The complex with Al3+ is significantly more fluorescent than that with Zn2+, presumably because the dimeric complex with Zn2+ is associated with additional nonradiative channels. This contention has been put to test, through a careful investigation of excited state dynamics of the anionic form of salophen (Sal2−), which is the form in which the ligand exists in the complexes. The emissive excited state of the anion (Sal2−) has been found to be solvated and conformationally relaxed, over tens of picosecond. It is significantly more fluorescent than the neutral compound, with fluorescence lifetime that is longer by almost two orders of magnitude. Fluorescence lifetime of the anion is in fact longer than that of the complex with Zn2+ and slightly less than that of the complex with Al3+. So, the earlier hypothesis about additional nonradiative deactivation pathways in the Zn2+ complex gains credence from the present study.  相似文献   
9.
In this paper, we exhibit the colorizing of brass surfaces by forming femtosecond laser induced microstructures on the sample surfaces. A variety of single colors such as brown, yellow, green, and black are introduced on brass surfaces by engineering periodic microgratings, microholes, and ring-shaped micro-patterns using Single Beam Direct Laser Writing (SBDLW) technique. The color of the micro-structured brass surfaces is certainly dependent on the width, depth, and period of the microstructures. Finally, we explain, in brief, the colorizing mechanism of metals by femtosecond laser induced microstructures.  相似文献   
10.
As one of the biological endogenous pigments, biliverdin (BV) and its dimethyl ester (BVE) have extremely weak fluorescence in solution with quantum yield less than 0.01%. However, the situation reverses with the addition of zinc ions. The strength for fluorescence of BVE-Zn\begin{document}$ ^{2+} $\end{document} complex is greatly enhanced and fluorescence quantum yield can increase to \begin{document}$ \sim $\end{document}5%. Herein, we studied ultrafast excited state dynamics of BVE-Zn\begin{document}$ ^{2+} $\end{document} complex in ethanol, \begin{document}$ n $\end{document}-propanol, and DMSO solutions in order to reveal the mechanism of fluorescence quantum yield enhancement. The results show that BVE can form a stable coordination complex with zinc with 1:1 stoichiometry in solution. BVE is structurally and energetically more stable in the complex. Using picosecond time-resolve fluorescence and femtosecond transient absorption spectroscopy, we show that smaller non-radiative rate constant of BVE-Zn\begin{document}$ ^{2+} $\end{document} complex in DMSO is the key to increasing its fluorescence quantum yield and the excited state decay mechanism is also revealed. These results provide valuable information about the fluorescence property change after BVE binding to metal ions and may provide a guidance for the study of phytochromes or other fluorescence proteins in which BV/BVE acts as chromophores.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号