首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
化学   4篇
  2021年   2篇
  2013年   2篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
Zymogen granule (ZG) constituents play important roles in pancreatic injury and disease. In previous studies, proteomic analyses with rat zymogen granules were separated by two‐dimensional gel electrophoresis or one‐dimensional SDS–PAGE, followed by in‐gel tryptic digestion. In order to overcome the disadvantage of in‐gel digestion and to carry out further in‐depth proteomic analysis of the zymogen granules, in this study, by combining a filter‐aided sample preparation method and fully automated 2D‐LC‐MS/MS technique, 800 ZG proteins were identified with at least two unique peptides for each protein, 75% of which have not been previously reported. The identified proteins revealed broad diversity in protein identity and function. This is the largest dataset of ZG proteome, and also the first dataset of the mouse ZG proteome, which may help elucidate on the molecular architecture of ZGs and their functions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
2.
马成  潘一廷  张琪  王继峰  钱小红  应万涛 《色谱》2013,31(11):1057-1063
蛋白质的N-糖基化是最重要的翻译后修饰之一,许多已知的血浆肿瘤诊断标志物及治疗靶标都是N-糖基化蛋白。针对血浆的糖蛋白质组研究有利于发现新的蛋白标志物。然而,血浆蛋白质浓度分布的动态范围非常宽,且同一位点上的糖链存在微观不均一性,影响了血浆中糖蛋白的鉴定效率。本文利用亲水材料ZIC-HILIC制备亲水富集柱分别对人血浆中的N-糖链和N-糖肽进行富集,并结合碱性反相色谱进行肽段的预分离和高准确度质谱分析,最终在健康人的血浆中鉴定到了299个糖基化蛋白、637个糖基化位点,并识别出31种不同的糖型。在这些鉴定到的糖基化位点中,新发现有107个N-糖基化位点(占总位点数的16.8%)。本方法操作简单,可以有效富集N-糖肽和N-糖,为在血浆中寻找糖蛋白和糖链生物标志物提供了可靠的手段。  相似文献   
3.
Our studies aimed to explore the protein components of the matrix of human submandibular gland sialoliths. A qualitative analysis was carried out based on the filter aided sample preparation (FASP) methodology. In the protein extraction process, we evaluated the applicability of the standard demineralization step and the use of a lysis buffer containing sodium dodecyl sulfate (SDS) and dithiothreitol (DTT). The analysis of fragmentation spectra based on the human database allowed for the identification of 254 human proteins present in the deposits. In addition, the use of multi-round search in the PEAKS Studio program against the bacterial base allowed for the identification of 393 proteins of bacterial origin present in the extract obtained from sialolith, which so far has not been carried out for this biological material. Furthermore, we successfully applied the SWATH methodology, allowing for a relative quantitative analysis of human proteins present in deposits. The obtained results correlate with the classification of sialoliths proposed by Tretiakow. The performed functional analysis allowed for the first time the selection of proteins, the levels of which differ between the tested samples, which may suggest the role of these proteins in the calcification process in different types of sialoliths. These are preliminary studies, and drawing specific conclusions requires research on a larger group, but it provides us the basis for the continuation of the work that has already begun.  相似文献   
4.
Sample preparation is the most critical step in proteomics as it directly affects the subset of proteins and peptides that can be reliably identified and quantified. Although a variety of efficient and reproducible sample preparation strategies have been developed, their applicability and efficacy depends much on the biological sample. Here, three approaches were evaluated for the human milk and plasma proteomes. Protein extracts were digested either in an ultrafiltration unit (filter-aided sample preparation, FASP) or in-solution (ISD). ISD samples were desalted by solid-phase extraction prior to nRPC-ESI-MS/MS. Additionally, milk and plasma samples were directly digested by FASP without prior protein precipitation. Each strategy provided inherent advantages and disadvantages for milk and plasma. FASP appeared to be the most time efficient procedure with a low miscleavage rate when used for a biological sample aliquot, but quantitation was less reproducible. A prior protein precipitation step improved the quantitation by FASP due to significantly higher peak areas for plasma and a much better reproducibility for milk. Moreover, the miscleavage rate for milk, the identification rate for plasma, and the carbamidomethylation efficiency were improved. In contrast, ISD of both milk and plasma resulted in higher miscleavage rates and is therefore less suitable for targeted proteomics.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号