首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   1篇
化学   2篇
  2022年   1篇
  2016年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
A novel nanostructured platform for pyruvate oxidase biosensors comprises poly(neutral red) (PNR) prepared by electropolymerization of NR in ethaline deep eutectic solvent (DES) with acid dopant, on a multiwalled carbon nanotubes (MWCNT) modified glassy carbon electrode (GCE). Characterization was by cyclic voltammetry and electrochemical impedance spectroscopy and morphology was examined by scanning electron microscopy. Ascorbate and H2O2 gave a better response at PNRDES/GCE than at PNRaq/GCE. Biosensors for pyruvate and phosphate, immobilizing pyruvate oxidase onto PNRDES/MWCNT/GCE enabled selective determination of pyruvate and phosphate, with micromolar limits of detection. Pyruvate was determined in onion samples and phosphate in water samples.  相似文献   
2.
The possibility of adopting deep eutectic solvents (DESs) instead of room temperature ionic liquids (RTILs) in membrane‐free electrochemical gas probes was estimated by first evaluating the performance of ethaline as electrochemical medium. This very easily prepared DES was chosen as prototype since it displays high conductivity and fairly modest viscosity, comparable with those of RTILs usually adopted in electrochemical measurements. Its electrostability window at Au, Pt and GC electrodes was first detected, together with diffusion coefficients displayed in this medium by ferrocene in the range 2.0–26.5 °C, it being adopted as prototype analyte in view of its well known electrochemical behavior and high enough solubility in ethaline. These diffusion coefficients were then used to infer viscosity values of ethaline at all temperatures considered, by exploiting the Stokes‐Einstein equation. Even though ferrocene diffusion coefficients turned out to be remarkably lower than those displayed in usual aprotic solvents, they were fairly higher than those usually found in electrochemical measurements conducted in RTILs, thus pointing out that the use of DESs as solvents adhering to electrode surfaces for assembling electroanalytical gas sensors could be advantageous. On these bases, a conveniently assembled DES‐based probe was tested for the electrochemical detection of low oxygen contents in cooled atmospheres. The quite satisfactory results found indicated that the drawback affecting DESs, consisting in the low values of diffusion coefficients displayed by dissolved analytes, can be overcome by using thin enough DES layers and resorting to a high sensitive detection approach such as amperometry under flow conditions. In fact, good sensitivities were found at all temperatures considered (2.0–26.5 °C), accompanied by a low detection limit (ca. 0.1 % v/v).  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号