首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   122篇
  免费   6篇
化学   123篇
物理学   5篇
  2021年   2篇
  2020年   2篇
  2019年   2篇
  2018年   2篇
  2017年   1篇
  2016年   3篇
  2015年   9篇
  2014年   2篇
  2013年   14篇
  2012年   7篇
  2011年   6篇
  2010年   11篇
  2009年   13篇
  2008年   5篇
  2007年   7篇
  2006年   9篇
  2005年   10篇
  2004年   17篇
  2003年   5篇
  2000年   1篇
排序方式: 共有128条查询结果,搜索用时 31 毫秒
1.
Tschmelak J  Proll G  Gauglitz G 《Talanta》2005,65(2):313-323
Certain contaminants at trace concentrations in surface waters can have dramatic effects on the hormonal system of organisms in the aquatic environment. Therefore, immunoanalytical methods at a very low limit of detection (LOD) and a low limit of quantification (LOQ) are becoming more and more important for environmental analysis and especially for monitoring drinking water quality. Environmental monitoring of antibiotics, hormones, endocrine disrupting chemicals, and pesticides in real water samples (e.g. surface, ground or drinking water) with difficult matrices places high demands on chemical analysis. Biosensors have suitable characteristics such as efficiency in allowing very fast, sensitive, and cost-effective detection. Here we describe an assay optimization process with a fully automated immunoassay for estrone which resulted in a LOD below 0.20 ng L−1 and a LOQ below 1.40 ng L−1. In contrast to common analytical methods such as GC-MS or HPLC-MS, the biosensor used requires no sample pre-treatment and pre-concentration. The very low validation parameters for estrone are the result of the continuous optimization of the immunoassay. The basis of our sensitive assay is the antibody with a high affinity constant towards estrone. During the optimization process, we reduced the amount of antibody per sample and improved the chip surface modification. Finally, this proceeding led to a calibration routine with an amount of antibody of only 3.0 ng per sample (sample volume: 1.0 mL). The reduction of the amount of antibody per sample results in better validation parameters (LOD, LOQ, and IC50), but this reduction leads to the current device-related limitation of the River Analyser (RIANA).For some endocrine disrupting compounds, no effect levels (NOELs) in the lower nanogram per liter range are reported. This defines the challenge, which analytical methods have to compete with and our RIANA instrument with its improved sensitivity for the detection of a single hormone in the lower nanogram per liter range is a powerful tool in aquatic analytics in addition to the common analytical methods.  相似文献   
2.
A novel sorbent, dihydroxylated polymethylmethacrylate (DHPMM), coated on hollow-fiber membrane, is used for the polymer-coated hollow-fiber microextraction of trace amounts of natural and synthetic estrogens, such as diethylstilbestrol, estrone, 17beta-estradiol and 17alpha-ethynylestradiol, in aqueous samples. In this procedure, estrogens were extracted using the functionalized polar DHPMM polymer with derivatization using N-methyl-N-(trimethylsilyl)trifluoroacetamide followed by gas chromatography-mass spectrometric analysis. The detection limits for estrogens in aqueous sample were between 0.03 and 0.8 ng l(-1) and the calibration curves were linear over the concentration range 0.05-10 microgl(-1) and had correlation coefficients of >0.994. The relative standard deviations (RSDs) were <15% (n = 3). This simple, accurate, sensitive and selective analytical method is applicable to the determination of trace amounts of estrogens in reservoir and potable water samples.  相似文献   
3.
环境内分泌干扰素分析方法进展   总被引:9,自引:0,他引:9  
本文详细介绍了国内外环境内分泌干扰素的分析研究进展。着重介绍了环境样品的预处理方法,并进行了比较和评价,对不同环境样品中内分泌干扰素的分析检测方法进行了介绍。  相似文献   
4.
An analytical procedure enabling routine analysis of four environmental estrogens at concentrations below 1 ng L–1 in estuarine water samples has been developed and validated. The method includes extraction of water samples using solid-phase extraction discs and detection by gas chromatography (GC) with tandem mass spectrometry (MS–MS) in electron-impact (EI) mode. The targeted estrogens included 17- and 17-estradiol (aE2, bE2), estrone (E1), and 17-ethinylestradiol (EE2), all known environmental endocrine disruptors. Method performance characteristics, for example trueness, recovery, calibration, precision, accuracy, limit of quantification (LOQ), and the stability of the compounds are presented for each of the selected estrogens. Application of the procedure to water samples from the Scheldt estuary (Belgium – The Netherlands), a polluted estuary with reported incidences of environmental endocrine disruption, revealed that E1 was detected most frequently at concentrations up to 7 ng L–1. aE2 was detected once only and concentrations of bE2 and EE2 were below the LOQ.Presented at the 9th FECS Conference on Chemistry and the Environment, Bordeaux, France, 29 August–1 September 2004  相似文献   
5.
An analytical method is presented which permits trace level determination of 17alpha-ethynylestradiol (EE2), 17beta-estradiol (E2), and estrone (E1). Using this method, the estrogenic steroids were analyzed in drinking water, surface water, and wastewater (sewage influents and effluents) at concentrations down to 0.1 ng/L. Sample volumes between 100 and 500 mL are concentrated using automated solid-phase extraction. Analysis is performed by liquid chromatography with detection by tandem mass spectrometry. Applying simple clean-up procedures and internal standard calibration, recovery losses resulting from matrix-dependent ion suppression during electrospray ionization could be compensated for all of the investigated compounds. Recoveries around 100% were obtained for all analytes after correction using the internal standards. Limits of quantification (LOQ) were between 0.1 and 0.4 ng/L for purified sewage, surface, ground, and drinking water and between 1 and 2 ng/L in the case of raw sewage. Water treatment by wastewater treatment plants (WWTPs) or by a surface water treatment plant affected the removal of all estrogenic steroids. Thus, E1, E2, and EE2 were removed in the municipal WWTPs to the extent of 93%, 93%, and 80%, respectively. In the effluents of the WWTP in Ruhleben (Berlin, Germany), E1, E2, and EE2 were detected at the low ng/L level. E2 and EE2 were, however, not present in the Berlin surface water above the LOQ (0.2 ng/L). E1 was the only compound that could be detected in surface water samples. After additional surface water treatment it was still detectable but only at trace-level concentrations with a mean value of 0.16 ng/L.  相似文献   
6.
Active endocrine disruptors (nonylphenol, octylphenol and bisphenol A) were analysed in 2 aquifers and the corresponding surface waters. They are compounds widely used in industrial processes. The objective of this study was to determine the leaching potential of these compounds in groundwaters and to eventually correlate these levels with surface water samples. The areas sampled were agricultural, close to large cities and with an important industrial activity in the surrounding area. Samples (200 mL) were extracted using off-line SPE with polymeric OASIS 60 mg cartridges. Analyses were performed by gas chromatography-mass spectrometry (GC-MS) using selected ion monitoring (SIM) and full scan for quantification and unequivocal identification, respectively. This paper reports the detection limit for the compounds studied (from 0.001 to 0.030 μg L−1), and method performance as regards to linearity (0.01–1.3 μg L−1), reproducibility (less than 9%) and recovery (84 to 95%). The results from a monitoring program revealed the presence of the target compounds in all samples analysed, at levels of 0.07 and 1.9 μg L−1. The presence of these compounds in groundwater was attributed basically to degradation of inert ingredients present in the formulation of many pesticides or to the increasing application of sludge in agricultural practice, although the infiltration of industrial run-off and wastewater disposal cannot be disregarded.  相似文献   
7.
A bisphenol A (BPA) molecularly imprinted polymer, the composition of which was optimised using a chemometric approach, has been applied to the selective preconcentration of the template from aqueous samples. The selectivity of the polymer toward BPA and related compounds was evaluated chromatographically. The BPA-imprinted polymer was packed in a column and used for continuous on-column solid-phase extraction (MISPE) of aqueous samples followed by subsequent analysis by HPLC with fluorescence detection of the eluted fractions. The composition of the washing solvent applied in the MISPE procedure was optimised to favour the specific interactions of the MIP with BPA and to remove the non-selectively bound matrix components. The MISPE method has proven to be effective for selective preconcentration of BPA in aqueous samples (recoveries >84% obtained in the eluate for 10–100 mL sample volumes) enabling detection and quantification limits of 1.0 and 3.3 ng mL–1, respectively (based on 25 mL sample size). Analytical recoveries were between 92 and 101% for river water samples spiked with known amounts of BPA (30, 60, and 80 ng mL–1); relative standard deviations (RSD) were lower than 5.0%.  相似文献   
8.
Increased concern over the risk resorcinol (RS) pose to ecology and humans, led to its position in European Union Category 1 list of endocrine disruptors. Legal measures restricted RS utilization and hence crucial to monitor its levels in the environment. Herein we report development of highly efficient and economically viable electrochemical sensor for quantitative determination of RS based on 77Maghemite/MultiWall Carbon Nanotube (M/MWCNT) modified carbon paste electrode. M/MWCNT was synthesized via strategic IR irradiation for the first time, a promising approach to overcome other complicated chemical routes. Powder X‐ray diffraction (PXRD), Transmission electron microscopy (TEM), Field emission scanning electron microscopy (FESEM) and Energy dispersive X‐ray (EDX) were used for characterization. Using Differential Pulse Voltammetry (DPV), we report the lowest detection limit at 0.02 μM. The potential application of the sensor was accomplished as a result of excellent recoveries made from real samples fortified with RS. Results indicated the proficiency of the sensor reliable for rapid, onsite monitoring of RS water contamination and in biological matrices.  相似文献   
9.
Dispersive liquid–liquid microextraction method was developed for the determination of the amount of phthalate esters in bottled drinking water samples and dispersive liquid–liquid microextraction samples were analyzed by GC–MS. Various experimental conditions influencing the extraction were optimized. Under the optimized conditions, very good linearity was observed for all analytes in a range between 0.05 and 150 μg/L with coefficient of determination (R2) between 0.995 and 0.999. The LODs based on S/N = 3 were 0.005–0.22 μg/L. The reproducibility of dispersive liquid–liquid microextraction was evaluated. The RSDs were 1.3–5.2% (n = 3). The concentrations of phthalates were determined in bottled samples available in half shell. To understand the leaching profile of these phthalates from bottled water, bottles were exposed to direct sunlight during summer (temperature from 34–57°C) and sampled at different intervals. Result showed that the proposed dispersive liquid–liquid microextraction is suitable for rapid determination of phthalates in bottled water and di‐n‐butyl, butyl benzyl, and bis‐2‐ethylhexyl phthalate compounds leaching from bottles up to 36 h. Thereafter, degradation of phthalates was observed.  相似文献   
10.
The method employing molecularly imprinted polymers for the extraction and clean up of endocrine‐disrupting compounds (estrogens, bisphenol A, and alkylphenols) from water and sediment is described. The identical extraction/clean‐up and LC‐MS/MS condition were used for the analysis of both types of samples. The method showed high recoveries ranging from 90 to 99% with excellent precision (intrabatch: 3.6–9.3%; interbatch: 5.6–11.4% for water; intrabatch: 4.3–8.5%; interbatch: 6.1–9.6% for sediment). The LOD was in the range of 0.7–1.9 ng/L and 0.3–0.6 ng/g for water and sediment, respectively. Overall extraction on molecularly imprinted polymers substantially enhanced sample clean‐up. The difference in efficiency of clean‐up was particularly pronounced when a large sample volume/weight was extracted and analyzed. Finally, the method was successfully applied for the analysis of 20 water and sediment samples.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号