首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19555篇
  免费   2342篇
  国内免费   2337篇
化学   14510篇
晶体学   151篇
力学   1345篇
综合类   88篇
数学   620篇
物理学   7520篇
  2024年   31篇
  2023年   231篇
  2022年   347篇
  2021年   518篇
  2020年   633篇
  2019年   532篇
  2018年   456篇
  2017年   520篇
  2016年   713篇
  2015年   763篇
  2014年   957篇
  2013年   1491篇
  2012年   1098篇
  2011年   1464篇
  2010年   1139篇
  2009年   1289篇
  2008年   1355篇
  2007年   1409篇
  2006年   1338篇
  2005年   1075篇
  2004年   984篇
  2003年   782篇
  2002年   785篇
  2001年   529篇
  2000年   498篇
  1999年   448篇
  1998年   403篇
  1997年   346篇
  1996年   297篇
  1995年   276篇
  1994年   233篇
  1993年   209篇
  1992年   179篇
  1991年   149篇
  1990年   121篇
  1989年   84篇
  1988年   89篇
  1987年   66篇
  1986年   61篇
  1985年   57篇
  1984年   51篇
  1983年   20篇
  1982年   47篇
  1981年   32篇
  1980年   30篇
  1979年   19篇
  1978年   17篇
  1977年   14篇
  1976年   17篇
  1973年   9篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Nitrene transfer reactions have emerged as one of the most powerful and versatile ways to insert an amine function to various kinds of hydrocarbon substrates. However, the mechanisms of nitrene generation have not been studied in depth albeit their formation is taken for granted in most cases without definitive evidence of their occurrence. In the present work, we compare the generation of tosylimido iron species and NTs transfer from FeII and FeIII precursors where the metal is embedded in a tetracarbene macrocycle. Catalytic nitrene transfer to reference substrates (thioanisole, styrene, ethylbenzene and cyclohexane) revealed that the same active species was at play, irrespective of the ferrous versus ferric nature of the precursor. Through combination of spectroscopic (UV-visible, Mössbauer), ESI-MS and DFT studies, an FeIV tosylimido species was identified as the catalytically active species and was characterized spectroscopically and computationally. Whereas its formation from the FeII precursor was expected by a two-electron oxidative addition, its formation from an FeIII precursor was unprecedented. Thanks to a combination of spectroscopic (UV-visible, EPR, Hyscore and Mössbauer), ESI-MS and DFT studies, we found that, when starting from the FeIII precursor, an FeIII tosyliodinane adduct was formed and decomposed into an FeV tosylimido species which generated the catalytically active FeIV tosylimide through a comproportionation process with the FeIII precursor.  相似文献   
2.
Acridone as a new kind of visible light photocatalyst has been developed to catalyze metal free atom transfer radical polymerization (ATRP). The photocatalyst possess low excited state potential as can undergo an oxidative quenching pathway to initiate ATRP of vinyl monomers. Kinetic study and light on/off reaction demonstrate the “living”/controlled nature of the polymerization by light. Block copolymers can be achieved by using PMMA as macroinitiator to reinitiate polymerization of other vinyl monomers, which shows highly preserved Br chain-end functionality in the synthesized polymers. Moreover, the polymerization can be conducted under air atmosphere as most photocatalysts need anaerobic condition, which may give inspiration of further application of this kind of photocatalyst.  相似文献   
3.
Large cable net structures have been widely applied in aerospace engineering due to the feature of light-weight, high packaging efficiency, and high thermal stability. Structural vibrations induced by a variety of disturbances are inevitable in the space environment, resulting in the requirement of effective vibration control strategies for large cable net structures. Since the large cable net structures have many closely spaced vibrational modes in the range of low frequencies, traditional modal based control may cause modal truncation and spillover problems. In this paper, a wave-based boundary control strategy is adopted and its effectiveness to control the vibration of cable net structures is investigated, by transfer function analysis and numerical methods. It is found that the structural vibration can be absolutely resisted by applying the wave-based boundary controllers onto all the exterior nodes, when disturbances come from the external boundaries of the cable net. Our results in this paper can provide a theoretical basis for the vibration control of large cable net structures.  相似文献   
4.
We present the fabrication of core-shell-satellite Au@SiO2-Pt nanostructures and demonstrate that LSPR excitation of the core Au nanoparticle can induce plasmon coupling effect to initiate photocatalytic hydrogen generation from decomposition of formic acid. Further studies suggest that the plasmon coupling effect induces a strong local electric field between the Au core and Pt nanoparticles on the SiO2 shell, which enables creation of hot electrons on the non-plasmonic-active Pt nanoparticles to participate hydrogen evolution reaction on the Pt surface. In addition, small SiO2 shell thickness is required in order to obtain a strong plamon coupling effect and achieve efficient photocatalytic activities for hydrogen generation.  相似文献   
5.
By employing the perturbation formulae of the spin Hamiltonian parameters (SHPs) (g factors gxx, gyy, gzz, hyperfine structure constants Axx, Ayy, Azz and superhyperfine parameters Axx׳, Ayy׳, Azz׳) for a 3d1 ion in orthorhombically elongated octahedra and tetrahedra, the defect structures and the experimental EPR spectra are theoretically and systematically investigated for the two orthorhombic Ti3+ centers C1 and C2 in ZnWO4. Center C1 is ascribed to the impurity Ti3+ at host W6+ site associated with two nearest neighbor oxygen vacancies due to charge compensation. The resultant tetrahedral [TiO4]5– cluster is determined to undergo the local orthorhombic elongation distortion, characterized by the axial distortion angle Δθ (=θθ0≈–6.84°) of the local impurity-ligand bond angle θ related to θ0 (≈54.74°) and the perpendicular distortion angle Δε (=εε0≈2.5°) related to ε0 (≈45°) of an ideal tetrahedron because of the Jahn–Teller effect. Center C2 is attributed to Ti3+ on Zn2+ site, and this octahedral [TiO6]9– cluster may experience the local axial elongation ΔZ (≈0.001 Ǻ) and the planar bond angle variation Δφ (≈9.1°) due to the Jahn–Teller effect, resulting in a more regular oxygen octahedron. All the calculated SHPs (i.e., g factors for both centers, the hyperfine structure constants for center C2 and superhyperfine parameters of next nearest neighbor ligand W for center C1) show good agreement with the observed values. However, the theoretical results based on the previous assignment of center C1 as Ti3+ on W6+ site with only one nearest planar oxygen vacancy (i.e., five-fold coordinated octahedral [TiO5]7– cluster) show much worse agreement with the experimental data. The defect structures and the SHPs (especially the g anisotropies) are discussed for both centers. The present studies on the superhyperfine parameters of ligand W6+ for center C1 would be helpful to further investigations on the superhyperfine interactions of cation ligands which were rather scarcely treated before.  相似文献   
6.
In the present work, the use of cylindrical turbulators in a double pipe heat exchanger has been investigated. Cylindrical fin type of turbulators has been placed circumferentially separated by 90° on the outer side of an inner pipe at a regular pitch. Experimental studies were undertaken for different air flow rates in a turbulent regime whose Reynolds number range between 2500 and 10000. Heat transfer characteristics like Nu and friction factor have been experimentally determined. Parametric studies were conducted by changing the pitch and also the orientation of the turbulators. Nu and friction factor were found to increase as the pitch is reduced. A model with alternatively changed orientation outperformed others by exhibiting highest Nu and reduced friction factor.  相似文献   
7.
Monodisperse aqueous upconverting nanoparticles (UCNPs) were covalently immobilized on aldehyde modified cellulose paper via reduction amination to develop a luminescence resonance energy transfer (LRET)-based nucleic acid hybridization assay. This first account of covalent immobilization of UCNPs on paper for a bioassay reports an optically responsive method that is sensitive, reproducible and robust. The immobilized UCNPs were decorated with oligonucleotide probes to capture HPRT1 housekeeping gene fragments, which in turn brought reporter conjugated quantum dots (QDs) in close proximity to the UCNPs for LRET. This sandwich assay could detect unlabeled oligonucleotide target, and had a limit of detection of 13 fmol and a dynamic range spanning nearly 3 orders of magnitude. The use of QDs, which are excellent LRET acceptors, demonstrated improved sensitivity, limit of detection, dynamic range and selectivity compared to similar assays that have used molecular fluorophores as acceptors. The selectivity of the assay was attributed to the decoration of the QDs with polyethylene glycol to eliminate non-specific adsorption. The kinetics of hybridization were determined to be diffusion limited and full signal development occurred within 3 min.  相似文献   
8.
The impact of reversible bond formation between a growing radical chain and a metal complex (organometallic‐mediated radical polymerization (OMRP) equilibrium) to generate an organometallic intermediate/dormant species is analyzed with emphasis on the interplay between this and other one‐electron processes involving the metal complex, which include halogen transfer in atom transfer radical polymerization (ATRP), hydrogen‐atom transfer in catalytic chain transfer (CCT), and catalytic radical termination (CRT). The challenges facing the controlled polymerization of “less active monomers” (LAMs) are outlined and, after reviewing the recent achievements of OMRP in this area, the perspectives of this technique are analyzed.  相似文献   
9.
DFT computations have been performed to investigate the mechanism of H2‐assisted chain transfer strategy to functionalize polypropylene via Zr‐catalyzed copolymerization of propylene and p‐methylstyrene (pMS). The study unveils the following: (i) propylene prefers 1,2‐insertion over 2,1‐insertion both kinetically and thermodynamically, explaining the observed 1,2‐insertion regioselectivity for propylene insertion. (ii) The 2,1‐inserion of pMS is kinetically less favorable but thermodynamically more favorable than 1,2‐insertion. The observation of 2,1‐insertion pMS at the end of polymer chain is due to thermodynamic control and that the barrier difference between the two insertion modes become smaller as the chain length becomes longer. (iii) The pMS insertion results in much higher barriers for subsequent either propylene or pMS insertion, which causes deactivation of the catalytic system. (iv) Small H2 can react with the deactivated [Zr]?pMS?PPn facilely, which displace functionalized pMS?PPn chain and regenerate [Zr]? H active catalyst to continue copolymerization. The effects of counterions are also discussed. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 576–585  相似文献   
10.
1,3-Azaprotio transfer of propargylic α-ketocarboxylate oximes, a new type of alkynyl oximes featuring an ester tether, has been explored by taking advantage of gold catalysis. The incorporation of an oxygen atom to the chain of alkynyl oximes led to the formation of two different oxa-cyclic nitrones. It was found that internal alkynyl oximes with an E-configuration deliver five-membered nitrones, whereas terminal alkynyl oximes with an E-configuration afford six-membered nitrones. DFT calculations on four possible pathways supported a stepwise formation of C−N and C−H bonds, in which a 1,3-acyloxy-migration competes with the 1,3-azaprotio-transfer, especially in the case of internal alkynyl oximes. The relative nucleophilic properties of oxygen in the carbonyl group and the nitrogen in the oxime, the electronic effects of alkynes, and the influence of the ring system have been investigated computationally.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号