首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   862篇
  免费   36篇
  国内免费   223篇
化学   1094篇
力学   2篇
物理学   25篇
  2024年   4篇
  2023年   123篇
  2022年   64篇
  2021年   67篇
  2020年   58篇
  2019年   25篇
  2018年   14篇
  2017年   20篇
  2016年   18篇
  2015年   27篇
  2014年   23篇
  2013年   24篇
  2012年   42篇
  2011年   46篇
  2010年   55篇
  2009年   80篇
  2008年   75篇
  2007年   68篇
  2006年   48篇
  2005年   45篇
  2004年   31篇
  2003年   33篇
  2002年   18篇
  2001年   23篇
  2000年   17篇
  1999年   8篇
  1998年   12篇
  1997年   8篇
  1996年   2篇
  1995年   10篇
  1994年   5篇
  1993年   2篇
  1992年   3篇
  1991年   3篇
  1990年   8篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1985年   7篇
  1982年   1篇
排序方式: 共有1121条查询结果,搜索用时 15 毫秒
1.
Active anodes, especially those consisting of metal mixed oxides (MMOs) containing Ru and/or Ir oxides, have been applied in the treatment of wastewater, especially when chloride ions are present. Their characteristics continuously drive the study of applications of these materials, be they in the degradation of different organic molecules, the preparation of new electrode materials and in the association of various processes to increase pollutant removal. Thus, this brief review aims to present some of the recent advances in the application of active anode materials in environmental electrochemistry. Focussing on the 2018–2020 period, it is possible to note many applied studies, using commercially available materials, covering a wide range of target pollutants. Still other studies aim to modify the catalyst surfaces to increase the mineralization capacity, and the use of these anodes in the production of free chlorine species to mediate indirect organic reduction is observed.  相似文献   
2.
The complex interplay of restricted mass transport leading to local accumulation or depletion of educts, intermediates, products, counterions and co-ions influences the reactions at the active sites of electrocatalysts when electrodes are rough, three-dimensionally mesoporous or nanoporous. This influence is important with regard to activity, and even more to selectivity, of electrocatalytic reactions. The underlying principles are discussed based on the growing awareness of these considerations over recent years.  相似文献   
3.
Yanmao Shi  Ping Wu  Pan Du  Chenxin Cai 《Acta Physico》2006,22(10):1227-1233
A new electroactive polynuclear inorganic compound of rare earth metal, gadolinium hexacyanoferrate (GdHCF), was prepared and characterized using the techniques of FTIR spectroscopy, thermogravimetric analysis (TG), UV-Vis spectrometry, X-ray photoelectron spectroscopy (XPS), ICP atomic emission spectroscopy, and EDX. The results of ICP atomic emission spectroscopy, EDX, and TGA indicated that the prepared GdHCF sample had a stoichiometry of NaGdFe(CN)6·12H2O (when GdHCF was prepared in NaCl solution). The FTIR spectrum of GdHCF showed that there were two types of water molecules in the structure of GdHCF: one was the interstitial water (5 H2O), which resulted from the association of water due to H-bonding, and the other was water coordinated with Gd (7 H2O). The results obtained using XPS showed that the oxidation state of Fe and Gd in the GdHCF sample was +2 and +3, respectively. GdHCF was immobilized on the surface of spectroscopically pure graphite (SG) electrode forming the GdHCF/SG electrode, and the solid-state electrochemistry of the resultant electrode was studied using cyclic voltammetry. The cyclic voltammetric results indicated that the GdHCF/SG electrode exhibited a pair of well-defined and stable redox peaks with the formal potential of E0′=(197±3) mV. The effects of the concentration of the supporting electrolyte on the electrochemical characteristics of GdHCF were studied, and the results showed that the value of E0′ increased linearly with the activity of the cationic ion of the supporting electrolyte (lgaNa+), with a slope of 54.1 mV, which may become a novel method for determining the activity of Na+ in solution. Further experimental results indicated that GdHCF had electrocatalytic activities toward the oxidation of dopamine (DA) and ascorbic acid (AA), and the electrocatalytic current increased linearly with the concentration of DA (or AA) in the range of 1.0–10.0 mmol·L?1 (for DA) or 0.5–20.0 mmol·L?1 (for AA).  相似文献   
4.
《Electroanalysis》2004,16(11):897-903
The reaction of iodine, electrogenerated from iodide, is used for the detection of As(III) via electrocatalytic reaction in the diffusion layer of a boron‐doped diamond electrode. The merits of this electrode material for this purpose (over platinum, gold or glassy carbon) are demonstrated and the kinetics of the reaction between I2 and As(III) in acid reported.  相似文献   
5.
The electrocatalytic oxidation of 2-propanol was investigated using on line differential electrochemical mass spectrometry (DEMS) on electrodeposited Pt and an arrange of bimetallics: Pt0.84Rh0.16, Pt0.70Rh0.30, Pt0.55Rh0.45. It has been observed that the Pt0.84Rh0.16 bimetallic electrode presented the best catalytic activity for 2-propanol electrochemical oxidation. Since 2-propanol is a secondary alcohol, only acetone and CO2 are produced. The total yield of CO2 and acetone has been determined from the DEMS measurements. It is found that acetone is the major product, as reported before for other electrodes. The acetone and CO2 yield depends on the electrode composition. High amount of rhodium in the electrode composition strongly diminish the reaction rate as indicated by the decrease of both the acetone and CO2 yield. However, acetone inhibition is much more intense. The only bimetallic electrode that presents considerable mass spectroscopy signals intensity for CO2 and acetone is the Pt0.84Rh0.16 electrode. This electrode shows a slight increase in CO2 selectivity, compared to the other electrodes studied in this work. Only very low coverages of stable adsorbates were present during the reaction. Two and one carbon adsorbate were observed for all the electrodes. Three carbon adsorbates were detected only for the Pt0.84Rh0.16 electrode. Therefore, acetone production does not require a stable adsorbate.  相似文献   
6.
本文报道了1:12-磷铜杂多酸(PMo_(12)薄膜修饰碳纤维(CF)微电极的制备及其电化学性质。采用简单,快速的浸渍吸附制备的PMo_(12)薄膜修饰CF电极在酸性介质中具有很高的稳定性和氧化还原活性,电解质溶液的pH值和扫描电位范围对PMo_(12)膜的稳定性和电化学性质产生较大的影响。另一方面,PMo_(12)薄膜修饰CF微电极对酸性水溶液中的PMo_(12)和氯酸根离子(ClO)_3~-)的电催化还原作用也进行了描述。  相似文献   
7.
The voltammetric behavior of uric acid (UA) was studied with an Au electrode modified with single-wall carbon nanotubes (SWNTs). In 0.1 M HAc-NaAc buffer solution (pH 5.0), the SWNT-modified electrode shows high electrocatalytic activity toward UA oxidation. The electro-oxidation of UA is an irreversible diffusion-controlled process with a diffusion coefficient (D) of 8.85×10−6 cm2 s−1. The peak current increases linearly with the concentration of UA in the range of 4.0×10−6-7.0×10−4 M. The detection limit is 1.0×10−6 M. The SWNT was characterized with scanning electron microscopy (SEM). Furthermore, the SWNT-modified electrode has favorable electrocatalytic activity toward dopamine and norepinephrine. This SWNT-modified electrode can also separate the electrochemical responses of uric acid, norepinephrine and ascorbic acid.  相似文献   
8.
低电流密度下恒电流法制备的聚苯胺修饰电极   总被引:3,自引:1,他引:3  
研究了低电流密度下恒电流法制备的聚苯(PA)修饰电极的性质及其影响因素,探讨了低电流密度聚合的PA膜的优点。发现此种条件下聚合的PA膜具有较好的电荷传输能力,它不仅对Br^-,Tl^+/Tl等电对的氧化还原反应有更好的电催化活性,而且对H^+的Nernast响应也更接近理论值。  相似文献   
9.
10.
《Electroanalysis》2003,15(8):739-746
A poly(allylamine)ferrocene monolayer was built on the surface of gold electrode modified with negatively charged alkanethiol based on electrostatic interaction. The electrochemical behavior of the modified electrode was characterized by cyclic voltammetry in detail. The modified electrode was shown to exhibit excellent electrocatalytic response to the oxidation of ascorbic acid. The anodic overpotential was reduced by about 170 mV compared with that obtained at a bare gold electrode. The modified electrode possesses several attractive features, such as simple preparation, fast response and good chemical and mechanical stability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号