首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
化学   1篇
  2003年   1篇
排序方式: 共有1条查询结果,搜索用时 0 毫秒
1
1.
Polyurethanes are widely used in the manufacture of commercial products such as foams and paints. During combustion, these polymers can generate isocyanates, which induce adverse health effects. Polymer pyrolysis (Py) hyphenated with mass spectrometry (MS) allows the investigation of polymer thermal degradation over time/temperature. A diphenylmethanediisocyanate (MDI) polyurethane foam was analyzed with electron ionization (EI) and metastable atom bombardment (MAB) ionization at a pyrolysis temperature of 400 °C. The recently introduced MAB ionization source uses discrete energy stored in metastable atoms of gases to ionize the analytes. This characteristic allows modulation of the ionization energy by simply changing the ionization gas. The extensive fragmentation of molecular ions observed using EI 70 eV is not totally eliminated with EI 10 eV. However, only molecular ions are observed with MAB using N2 as the ionization gas. Temperature gradients were used to separate the products generated during the thermal degradation of a 1,6-hexamethylenediisocyanate (HDI) polyurethane paint. The analysis of mass spectra was facilitated owing to a selective desorption of pyrolysis products. Furthermore, changing the MAB ionization gas allows elucidation of the structure of the pyrolysis products by controlling the extent of their fragmentation. During these experiments, isocyanic acid, methyleneisocyanate, ethyleneisocyanate, propylisocyanate and butylisocyanate were detected.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号