首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79篇
  免费   0篇
  国内免费   24篇
化学   96篇
物理学   7篇
  2024年   1篇
  2023年   3篇
  2022年   1篇
  2021年   3篇
  2020年   1篇
  2019年   2篇
  2017年   2篇
  2016年   4篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2011年   6篇
  2010年   3篇
  2009年   6篇
  2008年   4篇
  2007年   2篇
  2006年   2篇
  2005年   4篇
  2004年   3篇
  2003年   3篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   3篇
  1998年   4篇
  1997年   3篇
  1996年   1篇
  1995年   3篇
  1994年   3篇
  1990年   2篇
  1988年   5篇
  1987年   1篇
  1986年   3篇
  1985年   5篇
  1984年   2篇
  1981年   3篇
  1980年   3篇
  1979年   3篇
  1969年   1篇
排序方式: 共有103条查询结果,搜索用时 31 毫秒
1.
We have, theoretically and experimentally, investigated the dissociation of methane on the terraces and steps of a Ni(1 1 1) surface. Using Density Functional Theory (DFT) total energy calculations combined with Ultra High Vacuum (UHV) experiments, we find that the steps exhibit a higher activity than the terraces. We have, furthermore, investigated how carbon and sulfur present on the surface will deactivate the steps, leaving only the terraces active. We find the intrinsic sticking probabilities of methane on the steps and terraces at 500 K to be 2.8 × 10−7 for the steps and 2.1 × 10−9 for the terraces, in complete agreement with our calculated difference in activation energy of 17 kJ/mol.  相似文献   
2.
A new, simple procedure to deactivate fused silica capillaries without hydrothermal treatment is proposed. Based on high temperature reactions of octamethylcyclotetrasiloxane (D4) in the presence of oxygen, this procedure results, upon coating with dimethylsilicone (SE-30), in columns which give almost symmetric peaks for as little as 150 pg of critical compounds, such as decylamine, thereby demonstrating very high inertness. A mechanism of the deactivation procedure, which, in contrast to previously developed procedures, is based on thermal reactions under aerobic conditions, is proposed.  相似文献   
3.
“Leaching” or “etching” by strong mineral acids seems to be a necessary pretreatment step for the most commonly used deactivation procedures of glass capillaries by reaction with either polyethylene glycol or silylation reagents. The acidic sites which are formed on the surface during this acid treatment cannot be completely removed by the subsequent deactivation process. This drawback can be overcome by performing the leaching with water vapour, resulting in an accumulation of cations at the surface and a decrease in the number of silanol groups. Capillaries of this type show excellent properties for the chromatography of strongly basic compounds. After the wash-out of the alkaline surface layer, the acidity of the support is suited for the chromatography of strongly basic as well as strongly acidic compounds. Due to a lack of reactive acidic sites, special deactivation procedures have to be applied to capillaries produced in this way.  相似文献   
4.
Glass capillary columns have been prepared without acidic additive in the stationary phase, from which free organic acids elute as sharp and symmetrical peaks. The required surface in the borosilicate glass capillary was generated by a combination of leaching with aqueous HCl and deposition of colloidal silica particles; it can be coated with stationary phases have a broad range of polarity. Aqueous samples containing free organic acids can also be analyzed in such columns in an isothermal mode.  相似文献   
5.
A method is described for surface deactivation and modification of fused silica capillary columns with a cyanopropyl-containing reagent. The deactivation procedure involved a dehydrocondensation reaction between a bis(cyanopropyl)methylhydropolysiloxane reagent and surface silanol groups at an optimum temperature of only 250°C. Actual critical surface tension measurements were made using the capillary rise method. Excellent deactivation for acidic and basic compounds at the low ng level, and wettability for nonpolar and polar polysiloxane stationary phases were obtained. A procedure was developed to remove acidic impurities that are present in polar stationary phases.  相似文献   
6.
Retention gape deactivated with Silicone OV-1701-OH show good chromatographic performance and remarkable stability against water induced stationary phase degradrdation. In an attempt to better understand the findamentals off the deactivation process using silanol terminated polysiloxanes, a fumed silica was deactivated with Silicon OV-1701-OH. In contrast to fused silic capillaries, fumed silica (Aerosil A-200) can be studied by 29Si cross-polarization magic-angle-spinning (CPMAS) NMR, thus serving as a model substrate for fused silica. Retention data from inverse gas chromatography at infinite dilurion and 29Si CP MAS NMR data of five Aerosil phases, differing in residual silanol surface concentration, are correlated with the aim of validating this approach for stationary phase characterization. A comparatively detailed model of the deactivating polymer layer that explains the observed absorption activities is deduced. Surface silanols are shown to play a key role in the polymer layer, the structure of which is of primary importance for the absorption behavior after deactivation. Contrary to common belief, the absolute silanol surface concentration after deativation is only of secondary importance for the overall absorption activity. High silanol surface concentrations enhance degradation of the polysiloxane chains into small cyclic fragments as well as subsequent absorption and immobolization to the silica substrate surface. The mobility of linear polysiloxane chains in the kHz regime (as determined bby NMR cross-polarization dynamics) appears to determine the extent which the residual silanols are accessible for analytes. It is therefore anticipated that there is an optimum silanol surface concentration of fused silica surfaces to be deactivated with silanol terminated polysiloxanes; it should be lazrge enough to adsord polymer fragments, but not large to avoid excessive residual silanol activity.  相似文献   
7.
Four tetradentate nitrogen ligands, viz. dichloro{[N,N-diphenyl-N,N-di(quinoline-2-methyl)]-1,2-ethylene diamine} (1), {[N,N-dioctyl-N,N-di(quinoline-2-methyl)]-1,2-ethylene diamine} (2), {[N,N-dibenzyl-N,N-di(quinoline-2-methyl)]-1,2-ethylene diamine} (3), and (1R,2R)-(−)-N,N-di(quinoline-2-methyl) di-iminocyclohexane (4), were investigated as novel complexing ligands in iron-mediated atom transfer radical polymerization (ATRP) of methyl methacrylate where ethyl-2-bromoisobutyrate was the initiator in o-xylene at 90 °C. With ligands 1 and 2 the experimental molecular weights increased gradually with monomer conversion. High to moderate conversions (87%, 43%) were obtained in relatively short times (90 min for 1 and 30 min for 2), which indicates an efficient catalyst system, but after these times a dramatic increase in viscosity of the polymerization medium led to loss of control. It is noteworthy that polymerization proceeded in a controlled manner with ligand 1, which has two rather bulky substituents on the N-atom. Such bulky ligands did not work for a copper-based system, where they led to excessive terminations or other side reactions. When the bulkiness of the substituents was significantly increased, as in ligand 3, a decrease in polymerization rate and loss of control occurred. Ligand 4 was less efficient than the other ligands, probably because the ethylene bridge was replaced by cyclohexane bridge.  相似文献   
8.
Residual adsorptive activity of reversed phase (RP) column packings used in supercritical fluid chromatography (SFC) can be significantly reduced by a dynamic in-situ silanization with diphenyltetramethyldisilazane (DPTMDS). RP-materials thus deactivated were characterized both chromatographically and by solid-phase 29Si NMR.  相似文献   
9.
M-MCM-41 catalysts (M: V, Cr, Fe, and Ga) prepared by direct hydrothermal synthesis (DHT) have been tested for dehydrogenation of ethylbenzene with CO2. The synthesized materials were characterized by X-ray diffraction (XRD), N2 adsorption (77 K), and diffuse reflectance UV–vis spectroscopic measurements. Cr-MCM-41 showed the highest activity among M-MCM-41 catalysts tested, resulting in the production of styrene with the conversion of 65% and the selectivity above 90%. The rate of styrene formation increased with increasing Cr loading up to 1.7 wt.%. It is suggested that Cr(VI)O4 in tetrahedral coordination is formed as an active monochromate species and reduced to Cr(III)O6 in octahedral coordination as a less active polychromate species during the reaction. Deactivated catalyst was regenerated by a treatment with gaseous oxygen or CO2, during which redistribution as well as reoxidation of polymeric Cr(III)O6 octahedra to monomeric Cr(VI)O4 tetrahedra was observed. The rate of CO formation increased together with that of styrene formation, while the rate of H2 formation decreased, with increasing partial pressure of CO2. It was confirmed that reverse water-gas shift reaction took place over Cr-MCM-41 by a separate experiment. The rate of CO formation during the dehydrogenation of ethylbenzene with CO2 over Cr-MCM-41 was well accounted for by assuming parallel occurrence of two reactions, i.e., direct oxidative dehydrogenation of ethylbenzene with CO2 and simple dehydrogenation of ethylbenzene thermodynamically assisted by reverse water-gas shift reaction.  相似文献   
10.
《中国化学快报》2021,32(10):3155-3158
Accurate detection of hydrogen sulfide (H2S) is of great significance for environmental monitoring and protection. We propose a colorimetric method for the detection of H2S by the use of mixed-node Cu-Fe metal organic frameworks (Cu-Fe MOFs) as highly efficient mimic enzymes for target-induced deactivation. The Cu-Fe MOFs were synthesized by a simple solvothermal method and could catalyze the H2O2 mediated oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) to oxTMB with a blue color. The presence of dissolved H2S would deactivate the mimic enzymes, and then the blue color disappeared. The mechanism of the sensor was discussed by steady-state kinetic analysis. The designed assay was highly sensitive for H2S detection with a linear range of 0−80 μmol/L and a detection limit of 1.6 μmol/L. Moreover, some potential substances in the water samples had no interference. This method with the advantages of low cost, high sensitivity, selectivity, and visual readout with the naked eye was successfully applied to the determination of H2S in industrial wastewater samples.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号