首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
化学   10篇
数学   2篇
物理学   1篇
  2024年   1篇
  2021年   1篇
  2016年   2篇
  2015年   1篇
  2013年   1篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2005年   1篇
排序方式: 共有13条查询结果,搜索用时 31 毫秒
1.
Urine uranium concentrations are the best biological indicator for identifying exposure to depleted uranium (DU). Internal exposure to DU causes an increased amount of urine uranium and a decreased ratio of 235U/238U in urine samples, resulting in measurements that vary between 0.00725 and 0.002 (i.e., natural and depleted uraniums 235U/238U ratios, respectively). A method based on inductively coupled plasma dynamic reaction cell mass spectrometry (ICP-DRC-MS) was utilized to identify DU in urine by measuring the quantity of total U and the 235U/238U ratio. The quantitative analysis was achieved using 233U as an internal standard. The analysis was performed both with and without the reaction gas oxygen. The reaction gas converted ionized 235U+ and 238U+ into 235UO2+ (m/z=267) and 238UO2+ (m/z=270). This conversion was determined to be over 90% efficient. A polyatomic interference at m/z 234.8 was successfully removed from the 235U signal under either DRC operating conditions (with or without oxygen as a reaction gas). The method was validated with 15 urine samples of known uranium compositions. The method detection limit for quantification was determined to be 0.1 pg U mL–1 urine and an average coefficient of variation (CV) of 1–2% within the sample measurements. The method detection limit for determining 235U/238U ratio was 3.0 pg U mL–1 urine. An additional 21 patient samples were analyzed with no information about medical history. The measured 235U/238U ratio within the urine samples correctly identified the presence or absence of internal DU exposure in all 21 patients.The opinions and assertions expressed herein are those of the authors and are not to be construed as official or as representing the views of the Armed Forces Institute of Pathology, the Department of the Army, or the Department of Defense  相似文献   
2.
为了使用单细胞电感耦合等离子体质谱(SC-ICP-MS)方法准确测定单个细胞中的铬(Cr)、锰(Mn)、铁(Fe)、铜(Cu)和锌(Zn)等多种内源性金属元素,该文基于动态反应池(DRC)模式对目标分析物的反应气流量和极杆抑制参数q(RPq)进行了优化,并研究了进样速度、细胞密度、驻留时间等因素对SC-ICP-MS检测的影响。分别采用细胞悬液直接进样、使用超声波探头使细胞悬液中的细胞破碎后进样和使用浓硝酸消解细胞后进样的ICP-MS测定结果对SC-ICP-MS定量结果的准确性进行验证分析。实验结果表明,可采用超声波破碎细胞的ICP-MS测定结果评估SC-ICP-MS测定的单细胞内Zn和Cu含量的准确性,采用酸消解细胞的ICP-MS检测结果验证单细胞内Fe和Cr的含量。缺少细胞标准物质时对SC-ICP-MS方法定量结果进行多角度验证是必要的。研究表明,使用SC-ICP-MS法可以较好地进行单细胞元素相关分析。  相似文献   
3.
Real world manufacturing systems are usually constrained by both machine and human resources. Human operators are often the constraining resource and transfer between workstations to process jobs when required. This kind of system is known as a Dual Resource Constrained (DRC) system and presents additional technical challenges which must be considered during planning and scheduling. These technical challenges can be categorised into the five main dimensions of job release mechanisms, job dispatching, worker flexibility, worker assignment and transfer costs. This paper aims to provide an overview of recent developments in DRC research concerned with each of these areas and also discusses some possible approaches to solving the resource scheduling problem in a DRC system. The focus is on materials published after 1995 and up to 2009. Previous reviews on DRC systems are commented on and followed by a review of recent works associated with each of the five dimensions of DRC system research. Advancements made and new methodologies proposed are discussed and future research directions are identified.  相似文献   
4.
Hou X  Roos P 《Analytica chimica acta》2008,608(2):105-139
The radiometric methods, alpha (α)-, beta (β)-, gamma (γ)-spectrometry, and mass spectrometric methods, inductively coupled plasma mass spectrometry, accelerator mass spectrometry, thermal ionization mass spectrometry, resonance ionization mass spectrometry, secondary ion mass spectrometry, and glow discharge mass spectrometry are reviewed for the determination of radionuclides. These methods are critically compared for the determination of long-lived radionuclides important for radiation protection, decommissioning of nuclear facilities, repository of nuclear waste, tracer application in the environmental and biological researches, these radionuclides include 3H, 14C, 36Cl, 41Ca, 59,63Ni, 89,90Sr, 99Tc, 129I, 135,137Cs, 210Pb, 226,228Ra, 237Np, 241Am, and isotopes of thorium, uranium and plutonium. The application of on-line methods (flow injection/sequential injection) for separation of radionuclides and automated determination of radionuclides is also discussed.  相似文献   
5.
As a long-lived beta-emitting radioisotope of iodine, 129I is produced both naturally and as a result of human nuclear activities. At present time, the main part of 129I in the environment originates from the human nuclear activity, especially the releases from the spent nuclear fuel reprocessing plants, the 129I/127I ratios have being reached to values of 10−10 to 10−4 in the environment from 10−12 in the pre-nuclear era. In this article, we review the occurrence, sources, inventory, and concentration level of 129I in environment and the method for speciation analysis of 129I in the environment. Measurement techniques for the determination of 129I are presented and compared. An overview of applications of 129I speciation in various scientific disciplines such as radiation protection, waste depository, and environmental sciences is given. In addition, the bioavailability and radiation toxicity (dose to thyroid) of 129I are discussed.  相似文献   
6.
For the understanding and prediction of chemical reactions, detailed knowledge of the minimum energy path between reactants and transition state is of utmost importance. Stewart et al. (J. Comput. Chem. 1987, 8, 1117) proposed the usage of molecular trajectories calculated from Newton's equations of motion for an efficient reaction path following. Two operational modes are possible thereby: intrinsic (IRC) and dynamic reaction coordinate calculations (DRC). The technical difference between these modes is that in an IRC calculation the kinetic energy of the nuclei is quenched while the total energy is conserved in DRC calculations. In this work, a heuristic control methodology of atomic kinetic energies in DRC calculations using fuzzy logic is proposed. A diversified test set of 10 reactions has been collected to examine the performance of this approach. Fuzzy rule‐based models are found to be a convenient way to make the determination of accessible paths of chemical reactions computationally efficient. © 2013 Wiley Periodicals, Inc.  相似文献   
7.
研究了电感耦合等离子体质谱法直接测定土壤或沉积物中汞时钨的氧化物的干扰。在动态反应池中通入氧气将202 WO+氧化成更高的氧化物离子(218 WO2+或234 WO3+),202 Hg+与氧气不反应从而消除钨的氧化物干扰。在副反应抑制参数q为0.75,氧气流量为1.9mL·min-1时,m/z202处背景降低100倍,202 Hg的测定下限(10σ)为0.5ng·g-1。方法用于土壤和沉积物标准物质的分析,结果表明本法可消除钨的氧化物对汞的质谱干扰。  相似文献   
8.
In recent years the number of environmental applications of elemental speciation analysis using inductively coupled plasma mass spectrometry (ICP-MS) as detector has increased significantly. The analytical characteristics, such as extremely low detection limits (LOD) for almost all elements, the wide linear range, the possibility for multi-elemental analysis and the possibility to apply isotope dilution mass spectrometry (IDMS) make ICP-MS an attractive tool for elemental speciation analysis. Two methodological approaches, i.e. the combination of ICP-MS with high performance liquid chromatography (HPLC) and gas chromatography (GC), dominate the field. Besides the investigation of metals and metalloids and their species (e.g. Sn, Hg, As), representing “classic” elements in environmental science, more recently other elements (e.g. P, S, Br, I) amenable to ICP-MS determination were addressed. In addition, the introduction of isotope dilution analysis and the development of isotopically labeled species-specific standards have contributed to the success of ICP-MS in the field. The aim of this review is to summarize these developments and to highlight recent trends in the environmental application of ICP-MS coupled to GC and HPLC.  相似文献   
9.
Arsenic composes a danger for human health all over the world as it is responsible for water resources contamination. The toxicity of arsenic depends on its chemical form. However, occurrence of particular arsenic species is dependent on processes occurring in water. Nowadays, more arsenic species is detected and analyzed in different kind of water (mineral, tap, waste), mainly owing to great possibilities resulting from coupling high performance liquid chromatography (HPLC) with inductively coupled plasma mass spectrometry (ICP-MS). This review mainly describes arsenic speciation analysis by HPLC-ICP-MS technique on the basis of articles that have been published since 2000. Arsenic chemistry, occurrence in different kind of water, total arsenic determination with interferences elimination and its validation and analytical performance are also reviewed.  相似文献   
10.
This study compares natural and laboratory generated thermally transferred optically stimulated luminescence (TT-OSL) dose response curves (DRCs) for fine-grain quartz extracts from the Luochuan loess section in central China. Both DRCs saturate at high doses relative to the quartz OSL signal; the natural TT-OSL DRC saturates at about 2200 Gy and laboratory DRCs saturate at about 2700 Gy. However, the natural and laboratory TT-OSL DRCs deviate from one another at circa 150 Gy resulting in TT-OSL equivalent dose underestimation relative to palaeodoses expected from dose rates and independent age control. The lifetime of the TT-OSL signal at 10 °C, calculated from values of trap parameters E and s, is compared against the value for lifetime of the TT-OSL signal in nature at average burial temperature as determined from the age underestimation caused by deviation of the natural and laboratory generated DRCs. These two independent assessments of TT-OSL signal lifetime at Luochuan give similar values, suggesting that laboratory measurements of thermal stability reflect natural burial lifetimes and can potentially be used to correct TT-OSL ages for the difference between natural and laboratory dose response curves.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号