首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   94篇
  免费   9篇
  国内免费   8篇
化学   109篇
物理学   2篇
  2023年   9篇
  2022年   3篇
  2021年   6篇
  2020年   7篇
  2019年   9篇
  2018年   7篇
  2017年   6篇
  2016年   9篇
  2015年   11篇
  2014年   9篇
  2013年   6篇
  2012年   9篇
  2011年   5篇
  2010年   5篇
  2009年   7篇
  2008年   1篇
  2007年   1篇
  2005年   1篇
排序方式: 共有111条查询结果,搜索用时 140 毫秒
1.
Tian Y  Mao C 《Talanta》2005,67(3):532-537
This paper reports an improved catalytic molecular beacon. Addition of the target oligonucleotide activates a DNA enzyme (DNAzyme), which, in turn, activates multiple copies of molecular beacons (MB) and gives rise to a strong fluorescence signal. In a previous design, the activated DNAzyme could oligomerize, especially dimerize, and result in inactivation of the DNAzyme. The current design avoids this problem, upon activated by the target DNA, the DNAzyme will stay constantly active. With the improved method, a detection of 10 pM DNA has been demonstrated, which is 1000 times more sensitive than the method previously reported.  相似文献   
2.
DNAzymes are a promising platform for metal ion detection, and a few DNAzyme‐based sensors have been reported to detect metal ions inside cells. However, these methods required an influx of metal ions to increase their concentrations for detection. To address this major issue, the design of a catalytic hairpin assembly (CHA) reaction to amplify the signal from photocaged Na+‐specific DNAzyme to detect endogenous Na+ inside cells is reported. Upon light activation and in the presence of Na+, the NaA43 DNAzyme cleaves its substrate strand and releases a product strand, which becomes an initiator that trigger the subsequent CHA amplification reaction. This strategy allows detection of endogenous Na+ inside cells, which has been demonstrated by both fluorescent imaging of individual cells and flow cytometry of the whole cell population. This method can be generally applied to detect other endogenous metal ions and thus contribute to deeper understanding of the role of metal ions in biological systems.  相似文献   
3.
该文基于酶辅助靶标循环信号放大策略构建了用于黄曲霉毒素B1(AFB1)高灵敏检测的化学发光适体传感器。以G-四链体/氯化血红素DNA酶为信号分子设计了免标记的适体探针H1-S1和发夹探针H2。适体探针结合目标AFB1,在核酸外切酶I辅助下,触发靶标循环反应产生发夹H1。发夹H1与H2杂交,释放出完整的G-四链体序列,并进一步与氯化血红素结合形成G-四链体/氯化血红素DNA酶。DNA酶通过催化氧化鲁米诺-H2O2化学发光体系产生化学发光信号,实现AFB1的放大检测。在最优实验条件下,化学发光强度与AFB1质量浓度的对数在0.001~100 ng/mL范围内呈良好的线性关系,相关系数(r2)为0.9955,检出限为0.93 pg/mL,回收率为93.7%~107%。该适体传感器操作简单、灵敏度高、特异性好,在黄曲霉毒素污染检测方面具有良好的应用前景。  相似文献   
4.
快速测量污染水中重金属元素含量对于监测野外突发污染至关重要.建立了使用以生物酶(DNA酶)为原理的便捷仪器快速测定污染水中铅(Pb)和镉(Cd)元素含量的方法.使用生物酶传感器对标准溶液进行测量,根据溶液推荐和测量浓度之间的线性关系对仪器进行校准后,可测量的质量浓度范围:Pb为2~100 μg/L,Cd为0.1~1.0 mg/L.仪器可以在3~5 min内方便快速完成重金属的现场测量,使用DNA酶可以快速获得污染水中的微量金属元素含量,有利于野外重金属污染的即时测量.  相似文献   
5.
In this work, a new signal amplified strategy was constructed based on isothermal exponential amplification reaction (EXPAR) and hybridization chain reaction (HCR) generating the hemin/G-quadruplex horseradish peroxidase-mimicking DNAzyme (HRP-mimicking DNAzyme) nanowires as signal output component for the sensitive detection of thrombin (TB). We employed EXPAR’s ultra-high amplification efficiency to produce a large amount of two hairpin helper DNAs within a minutes. And then the resultant two hairpin helper DNAs could autonomously assemble the hemin/G-quadruplex HRP-mimicking DNAzymes nanowires as the redox-active reporter units on the electrode surface via hybridization chain reaction (HCR). The hemin/G-quadruplex structures simultaneously served as electron transfer medium and electrocatalyst to amplify the signal in the presence of H2O2. Specifically, only when the EXPAR reaction process has occurred, the HCR could be achieved and the hemin/G-quadruplex complexes could be formed on the surface of an electrode to give a detectable signal. The proposed strategy combines the amplification power of the EXPAR, HCR, and the inherent high sensitivity of the electrochemical detection. With such design, the proposed assay showed a good linear relationship within the range of 0.1 pM–50 nM with a detection limit of 33 fM (defined as S/N = 3) for TB.  相似文献   
6.
7.
A water‐soluble template‐assembled synthetic G‐quartet (TASQ) based on the use of a macrocyclodecapeptide scaffold was designed to display stable intramolecular folds alone in solution. The preformation of the guanine quartet, demonstrated by NMR and CD investigations, results in enhanced peroxidase‐type biocatalytic activities and improved quadruplex‐interacting properties. Comparison of its DNAzyme‐boosting properties with the ones of previously published TASQ revealed that, nowadays, it is the best DNAzyme‐boosting agent.  相似文献   
8.
DNAzymes have enjoyed success as metal ion sensors outside cells. Their susceptibility to metal‐dependent cleavage during delivery into cells has limited their intracellular applications. To overcome this limitation, a near‐infrared (NIR) photothermal activation method is presented for controlling DNAzyme activity in living cells. The system consists of a three‐stranded DNAzyme precursor (TSDP), the hybridization of which prevents the DNAzyme from being active. After conjugating the TSDP onto gold nanoshells and upon NIR illumination, the increased temperature dehybridizes the TSDP to release the active DNAzyme, which then carries out metal‐ion‐dependent cleavage, resulting in releasing the cleaved product containing a fluorophore. Using this construct, detecting Zn2+ in living HeLa cells is demonstrated. This method has expanded the DNAzyme versatility for detecting metal ions in biological systems under NIR light that exhibits lower phototoxicity and higher tissue penetration ability.  相似文献   
9.
10.
A facile and simple paper-based scanometric assay was developed to detect Pb2+ using GR5-DNAzyme. Magnetic beads (MBs) and gold nanoparticles (AuNPs) were used as a signal collector and a signal indicator, respectively. They were linked together by GR5-DNAzyme, comprising an enzyme and a substrate strand pairing up with each other. In the presence of Pb2+, the substrate strand is cut into two pieces, resulting in the disassembly of AuNPs from the MBs. These AuNPs were spotted on predefined areas on a chromatography paper, where signal is amplified through silver reduction. This sensing platform exhibits high sensitivity and selectivity toward Pb2+, giving a detection limit of 0.3 nM and a linear fitting range from 0.1 to 1000 nM. Testing of this biosensor in river water and synthetic urine samples also showed satisfying results. Besides offering simultaneous and multi-sample analysis, this paper-based sensing platform presented here could be potentially applied and served as a general platform for on-site, naked eyes, and low-cost monitoring of other heavy metal ions in environmental and body fluid samples.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号