首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   0篇
  国内免费   1篇
化学   26篇
力学   1篇
  2023年   1篇
  2019年   1篇
  2014年   1篇
  2013年   3篇
  2009年   1篇
  2008年   4篇
  2007年   1篇
  2006年   3篇
  2005年   1篇
  2004年   1篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1996年   4篇
  1985年   1篇
排序方式: 共有27条查询结果,搜索用时 31 毫秒
1.
2.
Curing of diglycidyl ether of bisphenol-A (DGEBA) with phosphorus containing amide amines i.e. bis[3(3’-aminobenzamido phenyl)]methyl phosphine oxide (MB),bis[3(4’-aminobenzamido phenyl)]methyl phosphine oxide (PB), tris[3(3’-aminobenzamidophenyl)] phosphine oxide (MT) and tris[3(4’-aminobenzamido phenyl)] phosphine oxide (PT)and conventionally used curing agent 4,4’-diaminodiphenyl sulfone (D) was studied by DSC. The amines MB, PB, MT and PT were synthesised in the laboratory and were characterized by determining elemental composition, melting point, and amine equivalent. Structural characterization was done by 1H-NMR and FTIR. The onset temperature of curing depended on the nucleophilicity of the amines and was in the orderMT≈MB<PT<PB<D. The exothermic peak temperatures were in the orderD>PB>PT>MT≈MB. The char residue of cured epoxy resin was significantly higher when phosphorus was incorporated in the cured network. Using mixed amine formulations based on amine D and P-containing amines and the molar ratio of these amines could easily control the curing characteristics. A linear relationship between char yield and P-content was observed in such formulations. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
3.
A hyperbranched aromatic polyester (HBPOH) has been synthesized, and poly(ε‐caprolactone) arms have been grown on some of its end hydroxyl groups (HBPCL). These modifiers have been used in cationic diglycidyl ether of bisphenol A formulations cured with ytterbium triflate as cationic initiator. The effect of HBPOH and HBPCL on the curing kinetics has been studied using differential scanning calorimetry (DSC). The obtained materials have been characterized by dynamomechanical analysis, DSC, thermogravimetric analysis and mechanical tests. The modifiers are incorporated into the thermosetting network because of the participation of the end hydroxyl groups in the cationic curing of epoxides by the activated monomer mechanism. Homogeneous thermosets have been obtained with a remarkable increase in impact strength without sacrificing elastic modulus or hardness. A compromise between the rigid structure of the aromatic hyperbranched core and the flexibilizing effect of the poly(ε‐caprolactone) arms is believed to be responsible for the overall thermal and mechanical properties of the materials. The use of these polymeric modifiers increases the thermal stability of the resulting materials because of the low degradability of the aromatic ester groups in the hyperbranched core and the incorporation of the modifier into the network structure. However, the presence of such ester groups makes them reworkable by hydrolysis or alcoholysis in an alkaline medium, thus opening a way for recovery of valuable substrates. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
4.
Solid state 1H NMR line‐shape analysis and (double quantum) DQ 1H NMR experiments have been used to investigate the segmental and polymer chain dynamics as a function of temperature for a series of thermosetting epoxy resins produced using different diamine curing agents. In these thermosets, chemical crosslinks introduce topological constraints leading to residual stresses during curing. Materials containing a unique ferrocene‐based diamine (FcDA) curing agent were evaluated to address the role of the ferrocene fluxional process on the atomic‐level polymer dynamics. At temperatures above the glass transition temperature (Tg), the DQ 1H NMR experiments provided a measure of the relative effective crosslink and entanglement densities for these materials and revealed significant polymer chain dynamic heterogeneity in the FcDA‐cured thermosets. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1143–1156  相似文献   
5.
Differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) studies have been performed to reveal a crosslinked epoxy nature of the spherical particles formed in cured epoxy/DDS/PMMA blends. An interesting phase inversion phenomenon was observed in cured DGEBA/DDS/PMMA blends, which occurred at a relatively low thermoplastic composition of 20 phr PMMA in blends. A unique method of preparing crosslinked epoxy spheres of controlled sizes based on cure-induced phase inversion is described in this report. Several factors have been found to affect the geometry of the formed epoxy spheres. The volume fraction of PMMA in the blends strongly dominates the influence. With the increase of PMMA volume fraction in the blends, the spheres not only become smaller in sizes, but also more regular in the spherical geometry due to less impingement. The crosslinking density (DDS phr in the blends) has been found to influence the average sizes of the spheres. The cure temperature has relatively limited effects only when the PMMA loadings in the blends are relatively small. Various potential applications for the epoxy microspheres may be investigated in future studies. © 1996 John Wiley & Sons, Inc.  相似文献   
6.
The curing behaviour of diglycidyl ether of bisphenol-A (DGEBA) was investigated by the dynamic differential scanning calorimetry using varying molar ratios of aromatic imide-amines and 4,4′-diaminodiphenylsulfone (DDS). The imide-amines were prepared by reacting 1 mole of naphthalene 1,4,5,8-tetracarboxylic dianhydride (N) and 4,4′-oxodiphthalic anhydride (O) with 2.5 moles of 4,4′-diaminodiphenyl ether (E) or 4,4′-diaminodiphenyl methane (M) or 4,4′-diaminodiphenylsulfone (S) and designated as NE/OE or NM/OM or NS/OS. The mixture of the imide-amines and DDS at ratio of 0:1, 0.25:0.75, 0.5:0.5, 0.75:0.25 and 1:0 were used to investigate the curing behaviour of DGEBA. A single exotherm was observed on curing with mixture of imide-amines and DDS. This clearly shows that the two amines act as co-curing agents. Curing temperatures were higher with imide-amines having sulfone linkage irrespective of anhydride. Curing of DGEBA with mixture of imide-amines and or DDS resulted in a decrease in characteristic curing temperatures. The thermal stability of the isothermally cured resins was also evaluated using dynamic thermogravimetry in a nitrogen atmosphere. The char yield was higher in case of resins cured imide-amines based on N and E. The activation energy of decomposition and integral procedural decomposition temperature were also calculated from the TG data.  相似文献   
7.
Several polyurethane-modified epoxy resins (PU/DGEBA-g-IPNs) were synthesized and characterized through a series tests, including differential scanning calorimetry and mechanical property measurements, such as tensile, Izod, bending and shear strengths were investigated in the study. The PU/DGEBA-g-IPNs and neat DGEBA as matrices for UHMWPE fiber-reinforced and aramid fiber-reinforced composites were prepared for comparison of their mechanical properties. The degree of plasma treatment, the polyurethane content, and the type of polyol in the polyurethane within the matrix of the composite were investigated through mechanical and bulletproof testing.  相似文献   
8.
Siloxane-incorporated epoxy (ESDG) copolymers were prepared by a hot-melt method. IR, 1H- and 13C-NMR are used to determine the structures. The data on the molecular properties indicate that reaction proceeded with a random polycondensation without involving the opening of the oxirane ring in the epoxy structure. Lowering Tgs with increasing siloxane content in copolymers are observed except for the copolymer modified with PDMS siloxane oligomer. Thermal stability data indicate that siloxane moiety exerts its thermal stability on the copolymer through dissipation of the heat, thus delaying thermal degradation of copolymers. Increasing impact strengths in J/M in the range of 22.0–59.0 are observed for copolymers and the improvement of the impact strength is closely related to the structure and content of siloxane oligomers in copolymers. A rough surface was observed by SEM examination on the propagation surface of the copolymeric impact specimen, while a smooth surface is observed on the unmodified epoxy specimen. The EDX analysis reveals these protruded features are Si-rich segments. The morphological observations suggest the siloxane segment may act as a toughening agent in the epoxy networks, thus contributing to the impact improvement of the copolymers. © 1996 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 34:1907–1922, 1996  相似文献   
9.
The curing kinetics of the diglycidyl ether of bisphenol‐A (DGEBA)/2‐ethyl‐4‐methylimidazole (EMI‐2,4)/nano‐sized carborundum (nano‐SiC) system was studied by means of nonisothermal differential scanning calorimetry (DSC). An isoconversional method of kinetic analysis yields a dependence of the effective activation energy E on the extent of conversion that decreases initially, and then increases as the cure reaction proceeds. The variations of E were used to study the cure reaction mechanisms, and the Shrinking Core Model was used to study the resin–particle reaction. The results show that the presence of nano‐SiC particles prevents the occurrence of vitrification, as well as inhibits the cure reaction. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 371–379, 2006  相似文献   
10.
Résumé Une nouvelle façon de repérer la gélification d'une résine thermodurcissable est proposée, à partir de mesures rhéologiques. Le point de gel est relié à une diminution de la vitesse de croissance du module visqueux observée sur les courbes expérimentales en cours de cinétique à température constante. Les temps de gel obtenus sont du même ordre que ceux donnés par les autres méthodes rhéologiques, mais font cependant apparaître des différences sensibles. Le temps de gel obéit à une loi d'Arrhénius en fonction de la température de cuisson.Le module visqueux au point de gel et, par conséquent la viscosité en ce point, varient avec la température. Il en est de même pour le facteur de perte tan . Par contre, le module élastique au point de gel se conserve quelle que soit la température. Ces résultats ont été obtenus sur deux formulations de résine: DGEBA (n = 0) – mPDA et DGEBA (n = 0) – DDM à la stoechiométrie.
A new method of characterizing gelation of a thermosetting resin from rheological measurements is proposed. Gelation is associated with a reduction in the speed of growth of the viscous modulus which is observed on the experimental curves during isothermal kinetics. Times of gelation obtained in this way are of the same order of magnitude as those found with other rheological methods, however distinct differences are observed. These times follow the Arrhenius' law as a function of the processing temperature.The viscous modulus at the gelation point and, as a consequence, the viscosity at this point, vary with temperature. This comes also true for the loss factor tan . In contrast, the elastic modulus at the gelation point does not change with the temperature. These results were obtained with two resin formulas: DGEBA (n = 0) – mPDA and DGEBA (n = 0) – DDM in stoechiometric concentration.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号