首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   0篇
化学   8篇
力学   6篇
物理学   7篇
  2021年   1篇
  2020年   1篇
  2017年   1篇
  2016年   2篇
  2013年   1篇
  2011年   2篇
  2009年   4篇
  2008年   2篇
  2007年   2篇
  2006年   2篇
  2003年   3篇
排序方式: 共有21条查询结果,搜索用时 15 毫秒
1.
Detergent-resistant membrane (DRM) rafts have been shown to play a pivotal role in regulating key cell biological processes, such as signal transduction, cellular transport and cell survival. The fine structure of membrane rafts are studied using various different imaging approaches and the outcomes are largely dependent on the detection methodology applied. All these microscopy techniques which employ light-, laser- and photon-optics, electrons as well as atomic force probing are characterized on their turn by their strengths and limitations for membrane raft identification. This explains in part the diversity of definitions available to describe these peculiar membrane structures. We present herewith an alternative and uncomplicated microscopy tool to study fluorescently labelled DRMs with information at the transmission electron microscopical level of the same cell, enabling us to obtain a snapshot of the morpho-functional relationships between the cell's interior and DRMs. The proposed approach of correlative fluorescence electron microscopy (CFEM) can therefore be considered as an additional alternative imaging approach to unravel DRM structure–function relationships from micro- to nanometre length scales, from the cell to the molecule.  相似文献   
2.
The rapid transmission of vaccinia virus(VACV)in vivo is thought to be closely related to the cell migration induced by it.Cell migration involved in dynamic changes of cell-substrate adhesion and actin cytoskeleton organization,which can influence by the micro/nano-scale topographic structures that cells are naturally exposed to via contact guidance.However,migration behaviors of VACV-infected cells exposed to topographic cues are still unknown.Herein,we designed an open chip with microgrooved poly(dimethyl siloxane)(PDMS)substrate to explore the topography roles in VACV-induced cell migration.Differed from the random cell migration observed in traditional scratch assay on planar substrate,VACV-infected cells had a tendency to persistently migrate along the axis parallel to microgroove with increased velocity.Moreover,infected cells exhibited a dominant elongated protrusion aligned to the micro-grating axis compare to the shorter lamella extended in any direction on smooth substrate.Interestingly,the Golgi complex preferred to relocate behind the nucleus confined within the micro-grating axis in majority of infected migratory cells.The directional polarization of cells embodied in protrusion formation and Golgi reorientation was responsible for the directionally persistent migration behaviors induced by VACV on microgrooved substrate.Infected cells response to substrate topography,causing the actin-filled stretched protrusion containing numerous virions and accelerated movement is likely to facilitate direct and rapid spread of VACV.This work opens a window for us to understand the migration behaviors of infected cells in vivo,and also provides a cue for revealing the relationship between virus-induced cell migration and virus rapid spread.  相似文献   
3.
The nematode spermatozoa represent a highly modified (aberrant) type of male gametes that lack a flagellum but for which the process of spermatogenesis culminates in the production of a crawling spermatozoon on the basis of the cytoskeletal component known as “major sperm protein”, or MSP. MSP is also known as an important hormone triggering oocyte maturation and ovulation in the model nematode Caenorhabditis elegans, where this protein was first identified. However, direct evidence of MSP localization and of its fate in nematode spermatogenic cells is rare. In this study, the spermatogenesis and sperm structure in the rhabditid nematode Acrobeles complexus (Rhabditida: Tylenchina: Cephalobomorpha: Cephaloboidea: Cephalobidae) has been examined with electron microscopy. Morphological observations were followed by high-pressure freezing and freeze-substitution fixation which allows post-embedding immunogold localization of MSP in all stages of sperm development using antibodies raised for MSP of C. elegans. In spermatocytes, synthetic activity results in the development of specific cellular components, fibrous bodies (FB) and membranous organelles (MO), which appear as FB-MO complexes where the filamentous matter of FB has been MSP-labeled. The spermatids subdivide into a residual body with superfluous cytoplasm, and a main cell body which contains nucleus, mitochondria and FB-MO complexes. These complexes dissociate into individual components, MO and FB, with the MSP being localized in FB. Immature spermatozoa from testes are opaque cells where a centrally located nucleus is surrounded by mitochondria, MO and FB clustered together, the MSP still being localized only in FB. Cytoplasm of mature spermatozoa from spermatheca is segregated into external pseudopods lacking organelles and a central cluster of mitochondria with intact MO surrounding the central nucleus. The FB ultimately disappear, and the MSP labeling becomes concentrated in the filamentous content of pseudopods and cytoplasm of the main cell body. Although the spermatogenesis and sperm structure of A. complexus is similar to that of many other rhabditid nematodes, their intact MO makes the morphology of the mature spermatozoa distinct from the “rhabditid pattern” and may be considered as a synapomorphy. The MSP localization in spermatogenic cells of A. complexus also follows the “rhabditid pattern” described in C. elegans and Ascaris spp. Our results and techniques of MSP labeling of A. complexus spermatogeneous cells reveal new possibilities to elucidate different research questions on MSP localization in nematodes related to C. elegans. Furthermore, the laboratory-cultured A. complexus strains can be used as a new and fascinating model to study MO and MSP functions in nematode reproduction.  相似文献   
4.
Background  The structural integrity of the alveolar monolayer, which is compromised during lung inflammation, is determined by the balance between cell–cell and cell-matrix tethering forces and the centripetal forces owing to cell viscoelasticity and contraction. Dexamethasone is an anti-inflammatory glucocorticoid with protective effects in lung injury. Aim  To determine the effects of Dexamethasone on the stiffness and contractility of alveolar epithelial cells. Methods  Cell stiffness (G′) and average traction exerted by the cell (T) were measured by magnetic twisting cytometry and by traction microscopy, respectively. A549 cells were treated 24 h with Dexamethasone (1 μM) or vehicle (control). G′ and T were measured before and 5 min after challenge with the inflammatory mediator Thrombin (0.5 U/ml). Changes induced by Dexamethasone in actin cytoskeleton polymerization were assessed by the fluorescent ratio between F-actin and G-actin obtained by staining cells with phalloidin and DNase I. Results  Dexamethasone significantly increased G′ and T by 56% (n = 11; p < 0.01) and by 80% (n = 17; p < 0.05), respectively. Dexamethasone also increased F/G-actin ratio from 2.68 ± 0.07 to 2.96 ± 0.09 (n = 10; p < 0.05). The relative increase in stiffness and contraction induced by Thrombin in control cells was significantly (p < 0.05) reduced by Dexamethasone treatment: from 190 to 98% in G′ and from 318 to 105% in T. Conclusion  The cytoskeleton remodelling and the increase in cell stiffness and contraction induced by Dexamethasone could account for its protective effect in the alveolar epithelium when subjected to inflammatory challenge.  相似文献   
5.
Ferrimagnetic iron oxide particles were inhaled by 17 healthy volunteers (9 non-smokers, 8 smokers), and the retained particles were magnetized and detected by a SQUID. Stochastic particle transport due to cytoskeletal reorganizations within macrophages (relaxation) and directed particle motion in a weak magnetic twisting field were investigated with respect to viscous and elastic properties of the cytoskeleton. Relaxation and cytoskeletal stiffness were not influenced by cigarette smoking. Relaxation and particle twisting revealed a non-Newtonian viscosity with a pure viscous and a viscoelastic compartment. Viscous and elastic data obtained from relaxation correlated with particle twisting, indicating that the proposed simple model is a reasonable approximation of cytoskeletal mechanical properties.  相似文献   
6.
We succeeded in performing of hybrid Scanning Probe Microscopy (hybrid-SPM) in which mechanical-SPM andfluorescence microscopy are combined. This technique is able to measure simultaneously mechanical properties anddistribution of cytoskeletons of living cells by using green fluorescent protein. We measured evolution of both local elasticityand distributions of actin stress fibers in an identical fibroblast living in physiological conditions. The SPM experimentsrevealed that stiffer lines develop in living cells, which correspond to actin stress fibers. The elasticity of the actin stressfibers is as high as 100 kPa. We discuss mechanical effects on the development of actin filament networks.  相似文献   
7.
In order to perform correlative light and electron microscopy (CLEM) more precisely, we have modified existing specimen preparation protocols allowing fluorescence retention within embedded and sectioned tissue, facilitating direct observation across length scales. We detail a protocol which provides a precise correlation accuracy using accessible techniques in biological specimen preparation. By combining a pre-embedding uranyl acetate staining step with the progressive lowering of temperature (PLT) technique, a methacrylate embedded tissue specimen is ultrathin sectioned and mounted onto a TEM finder grid for immediate viewing in the confocal and electron microscope. In this study, the protocol is applied to rat uterine epithelial cells in vivo during early pregnancy. Correlative overlay data was used to track changes in filamentous actin that occurs in these cells from fertilization (Day 1) to implantation on Day 6 as part of the plasma membrane transformation, a process essential in the development of uterine receptivity in the rat. CLEM confirmed that the actin cytoskeleton is disrupted as apical microvilli are progressively lost toward implantation, and revealed the thick and continuous terminal web is replaced by a thinner and irregular actin band, with individually distinguishable filaments connecting actin meshworks which correspond with remaining plasma membrane protrusions.  相似文献   
8.
Proteome maps obtained by synchronization of the wild-type Caenorhabditis elegans development reflected stage-dependent molecular differences and revealed dynamic cytoskeletal processes during ontogenesis. Distinct protein spots that may function as molecular markers for the corresponding developmental stages were mass spectrometrically identified. The amount of the Cu(2+)- Zn(2+) superoxide dismutase (CE23550) and an aspartyl proteinase (CE21681) was highest in the first larval stage (L1) and decreased during the ontogenesis from the first larval stage to the adult. Tropomyosin III (CE29059) was prominently present in the first and second larval stage (L1/L2). Abundances of actin 1 or 4 (CE12358 or CE13148) and tropomyosin I (CE28782) were particularly high in multiple spots in the third larval stage (L3). Interestingly, the amount of DIM-1 protein (CE27706), reflected by two spots, was the lowest in this stage. A particular splicing factor (CE31089) was detected only in the fourth larval stage (L4), whereas a spot with high abundance representing the cuticle collagen (CE02272) was only found highly expressed in adult animals (A). In addition, a Ca(2+)-binding protein (CE12368) and one protein spot which has not yet been identified, both reached their maximal spot intensities in the adult stage (A). Moreover, the ASP-1, CCT-5, GPD-1, GPD-2, HSP-6, HSP-16.2, IFB-2, LEC-2, LIN-53, LMN-1, MDH-1, NUD-1, RPA-0, RSP-12, SOD-1, TBB-1, TBB-2, TMY-1, UNC-60, and VIT-2 proteins for which mutants are available and two still unidentified protein spots which were present in all developmental stages, have been reproducibly localized in proteome maps of distinct ontogenesis states.  相似文献   
9.
Cell attachment and spreading on solid surfaces was investigated with a home-made quartz crystal microbalance (QCM), which measures the frequency, the transient decay time constant and the maximal oscillation amplitude. Initial interactions of the adsorbing cells with the QCM mainly induced a decrease of the frequency, coincident with mass adsorption. After about 80 min, the frequency increased continuously and after several hours exceeded the initial frequency measured before cell adsorption. Phase contrast and fluorescence microscopy indicated that the cells were firmly attached to the quartz surface during the frequency increase. The measurements of the maximal oscillation amplitude and the transient decay time constant revealed changes of viscoelastic properties at the QCM surface. An important fraction of these changes was likely due to alterations of cytosolic viscosity, as suggested by treatments of the attached cells with agents affecting the actin and microtubule cytoskeleton. Our results show that viscosity variations of cells can affect the resonance frequency of QCM in the absence of apparent cell desorption. The simultaneous measurements of the maximal oscillation amplitude, the transient decay time constant and the resonance frequency allow an analysis of cell adsorption to solid substratum in real time and complement cell biological methods.  相似文献   
10.
Controlling cellular responses on biomaterial surfaces is crucial in biomedical applications such as tissue engineering and implantable prosthetics. Since cells encounter various nanoscale topographic features in their natural environment, it has been postulated that surface nanotopography may be an alternative route to fabricate biomaterials with a desirable cellular response. In this framework, we investigated the responses of primary human fibroblasts to platinum substrates with different levels of surface roughness at the nanoscale. The nanorough surfaces were fabricated by using the glancing angle deposition technique (GLAD). We found that levels of cellular responses depended on the surface roughness and the size of the nanoscale features. We showed that in response to nanotopography cells spread less and have an elongated morphology, displaying signs of actin cytoskeleton impairment and reduced formation of focal adhesion complexes. Although cell growth and adhesion were impaired on the nanorough substrates, cell viability was not affected by topography. To a minor extent our results also indicate that cell migration might be reduced on the nanorough surfaces, since a significantly lower gene expression of migration related genes were found on the roughest surfaces as compared to the flat reference. The results presented here demonstrate that surface nanotopography influences fibroblasts responses on platinum, which may be used to reduce cellular adhesion on platinum implant surfaces such as implantable neural electrodes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号