首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   75篇
  免费   0篇
化学   75篇
  2020年   4篇
  2019年   19篇
  2018年   4篇
  2017年   15篇
  2016年   3篇
  2015年   2篇
  2014年   4篇
  2013年   3篇
  2011年   4篇
  2010年   7篇
  2009年   3篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
排序方式: 共有75条查询结果,搜索用时 15 毫秒
1.
Peptide macrocyclization is often a slow process, plagued by epimerization and cyclodimerization. Herein, we describe a new method for peptide macrocyclization employing the AgI‐promoted transformation of peptide thioamides. The AgI has a dual function: chemoselectively activating the thioamide and tethering the N‐terminal thioamide to the C‐terminal carboxylate. Extrusion of Ag2S generates an isoimide intermediate, which undergoes acyl transfer to generate the native cyclic peptide, resulting in a rapid, traceless macrocylization process. Cyclic peptides are furnished in high yields within 1 hour, free of epimerization and cyclodimerization.  相似文献   
2.
The precise synthesis of poly(thioester)s with diverse structures is still a significant challenge in the polymeric materials field. Herein, we report a novel approach to the synthesis of well‐defined poly(thioester)s by the controlled alternating copolymerization of cyclic thioanhydrides and episulfides induced by simple organic ammonium salts. Both the cation and anion have strong effects on the copolymerization. [PPN]OAc ([PPN]=bis(triphenylphosphine)iminium) with a bulky cation was proven to be efficient in initiating this polymerization, yielding poly(thioester)s with a completely alternating structure, controlled molecular weight, and narrow polydispersity. The poly(thioester) obtained from succinic thioanhydride and propylene sulfide is a typical semicrystalline material, possessing a high refractive index of up to 1.78. Because it uses readily available monomers, this method is expected to open up a new route to poly(thioester)s with diverse structures and properties.  相似文献   
3.
4‐Methylene‐1,3‐dioxolan‐2‐ones underwent oxidative addition of a Ni0 catalyst in the presence of Me2Al(OMe), followed by a coupling reaction with alkynes, to form δ,ϵ‐unsaturated β‐ketocarboxylic acids with high regio‐ and stereoselectivity. The reaction proceeds by [1,3] rearrangement of an enol metal carbonate intermediate and the formal reinsertion of CO2.  相似文献   
4.
5.
6.
Therapeutic applications of peptides are currently limited by their proteolytic instability and impermeability to the cell membrane. A general, reversible bicyclization strategy is now reported to increase both the proteolytic stability and cell permeability of peptidyl drugs. A peptide drug is fused with a short cell‐penetrating motif and converted into a conformationally constrained bicyclic structure through the formation of a pair of disulfide bonds. The resulting bicyclic peptide has greatly enhanced proteolytic stability as well as cell‐permeability. Once inside the cell, the disulfide bonds are reduced to produce a linear, biologically active peptide. This strategy was applied to generate a cell‐permeable bicyclic peptidyl inhibitor against the NEMO‐IKK interaction.  相似文献   
7.
A novel and efficient one‐pot method has been developed for the synthesis of cyclopropane‐fused bicyclic amidines on the basis of a CuBr2‐mediated oxidative cyclization of carbanions. The usefulness of this unique multicomponent strategy has been demonstrated by the use of a wide variety of substrates to furnish novel cyclopropane‐containing amidines with a quaternary center in very good yields. This ketenimine‐based approach provides straightforward access to biologically active and pharmaceutically important 3‐azabicyclo[n .1.0]alkane frameworks under mild conditions. The synthetic power of this methodology is exemplified in the concise synthesis of the pharmaceutically important antidepressant drug candidate GSK1360707 and key intermediates for the synthesis of amitifadine, bicifadine, and narlaprevir.  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号