首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   122篇
  免费   1篇
  国内免费   28篇
化学   105篇
力学   13篇
物理学   33篇
  2022年   3篇
  2021年   1篇
  2020年   3篇
  2019年   1篇
  2018年   3篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   7篇
  2013年   8篇
  2012年   1篇
  2011年   7篇
  2010年   6篇
  2009年   14篇
  2008年   13篇
  2007年   7篇
  2006年   6篇
  2005年   13篇
  2004年   12篇
  2003年   5篇
  2002年   2篇
  2001年   7篇
  2000年   5篇
  1999年   6篇
  1998年   5篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1993年   3篇
  1992年   1篇
排序方式: 共有151条查询结果,搜索用时 15 毫秒
1.
Reactions of the hydrated electron, H atoms, 2-propanol, and methanol radicals with the TiO2 nano-particles have been studied either directly or by competition kinetics. The radicals were produced by radiolysis of 2-propanol, t-butanol, or methanol aqueous solutions in acid pH's. The reactions involve electron injection to the conduction band. As expected, the t-butanol radical is inert towards TiO2 under our conditions, while the other reducing radicals react with TiO2. The reactivity decreases in the order: eaq>H>CH3COHCH3>CH2OH. Two TiO2 nanocrystallite sizes, with average diameters of 1.0 and 4.7 nm were compared. For equal concentrations (in terms of TiO2 molecules), the rate of electron injection shows relatively little dependency on particle size. The rates of interfacial electron transfer and transfer coefficient are also reported.  相似文献   
2.
Taking soil colloid and hydrated silica (quartz sand) as the experimental material, the comparative study has been made on the kinetics of ion diffusion and ion exchange in charged colloid and charged coarse disperse systems. The results showed that ion exchange kinetics in the two systems conform to the kinetic law of ion diffusion. Besides, through this comparative study on the kinetics of ion exchange and ion diffusion, a method has been advanced theoretically to estimate the quantity of adsorbed ion that is located in the inner of the Helmholtz layer. As far as hydrated silica is concerned , there were about 33 per cent of the total adsorbed quantity of Mg2+that were located in the inner of the Helmholtz layer under the given experimental conditions, bu tfor soil colloid the percentage was only 7.5.  相似文献   
3.
Cilia of hair cells are structurally similar to unilaminar phospholipid vesicles. The close juxtaposition of adjacent cilia is similar to the intervesicle distances found in groups of vesicles. Both cilia and vesicles operate in similar ionic environments. By comparing the cross section of cilia, which are cylinders with the cross section of vesicles, which are spherical, we can see how colloid theory can be applied to both cilia and vesicles. While vesicles have been studied as colloid particles, thus far colloid theory has not been applied to hair cell cilia. This paper presents a basic explanation of colloid theory in a simple graphic form that facilitates a colloid perspective of hair cell cilia behavior. A review of relevant hair cell cilia behavior supports the hypothesis that colloid knowledge is applicable to the problem of understanding cilia functionality in the hair cell. The electromagnetic nature of colloid forces allows for their involvement in the relatively high speed operation required of hair cells which are dealing with signals of up to 2×105 Hz. A fresh look at the biophysics of the hair cell from a colloid perspective may lower the barrier to a closer understanding of active mechanical sensory transduction, amplification and adaptation, and suggest a new domain for the application of colloid theory.  相似文献   
4.
The distortion of the charge cloud around a uniformly charged, dielectric, rigid sphere that translates and rotates in an unbounded binary, symmetric electrolyte at zero Reynolds number is examined. The zeta potential of the particle ζ is assumed small relative to the thermal voltage scale. It is assumed that the equilibrium structure of the cloud is slightly distorted, which requires that the Péclet numbers characterizing distortion due to particle translation, , and rotation, , are small compared to unity. Here, a is radius of the particle; D is the ionic diffusion coefficient; and , where U and Ω are the rectilinear and angular velocities of the particle, respectively. Perturbation expansions for small and are employed to calculate the nonequilibrium structure of the cloud, whence the force and torque on the particle are determined. In particular, we predict that the sphere experiences a force orthogonal to its directions of translation and rotation. This “lift” force arises from the nonlinear distortion of the cloud under the combined actions of particle translation and rotation. The lift force is given by . Here, ε is the permittivity of the electrolyte; is the Debye length; and is a negative function that decreases in magnitude with increasing . The lift force implies that an unconstrained particle would follow a curved path; an electrokinetic analog of the inertial Magnus effect. Finally, the implication of the lift force on cross‐streamline migration of an electrophoretic particle in shear flow is discussed.  相似文献   
5.
This study investigated the effect of the orientation of rough nanoparticles on Derjaguin and Landau, Verwey and Overbeek (DLVO) energy interaction. Rippled sphere model was used to survey van der Waals attraction energy and repulsive double-layer interaction energy between nanoparticles. The effect of particle size, asperity size, number of asperities, and concentration was studied for different orientations. Spherical coordinates were used to evaluate the effect of changes in orientation under controlled conditions. Surface element integral method was used to calculate DLVO energy interactions between rough particles at specific orientations. The DLVO energy results show that a change in orientation significantly affected the stability of the nanoparticles. The stability of dispersion varied as the contact surface between nanoparticles changed.  相似文献   
6.
Trapping, sorting, transportation, and manipulation of synthetic microparticles and biological cells enable investigations in their behavior and properties. Microfluidic techniques like rapid electrokinetic patterning (REP) provide a non-invasive means to probe into the nature of these micro and nanoparticles. The opto-electrically induced nature of a REP micro vortex allows tuning of the trap characteristics in real-time. In this work, we studied the effects of transient optical heating on the induced electrothermal vortex using micro-particle image velocimetry (μ-PIV) and computational modeling. A near infra-red (980 nm) laser beam was focused on a colloidal suspension of 1 μm polystyrene beads sandwiched between two parallel-plate electrodes. The electrodes were subjected to an AC current. The laser spot was scanned back-and-forth in a line, at different frequencies, to create the transient vortex. This phenomenon was also studied with a computational model made using COMSOL Multiphysics. We visualize fluid flow in custom-shaped REP traps by superposing multiple axisymmetric (spot) vortices and discuss the limitations of using superposition in dynamically changing traps.  相似文献   
7.
The dielectric properties between in-particle/water interface and bulk solution are significantly different, which are ignored in the theories of surface potential estimation. The analytical expressions of surface potential considering the dielectric saturation were derived in mixed electrolytes based on the nonlinear Poisson-Boltzmann equation. The surface potentials calculated from the approximate analytical and exact numerical solutions agreed with each other for a wide range of surface charge densities and ion concentrations. The effects of dielectric saturation became important for surface charge densities larger than 0.30 C/m\begin{document}$ ^2 $\end{document}. The analytical models of surface potential in different mixed electrolytes were valid based on original Poisson-Boltzmann equation for surface charge densities smaller than 0.30 C/m\begin{document}$ ^2 $\end{document}. The analytical model of surface potential considering the dielectric saturation for low surface charge density can return to the result of classical Poisson-Boltzmann theory. The obtained surface potential in this study can correctly predict the adsorption selectivity between monovalent and bivalent counterions.  相似文献   
8.
A simple and effective method, using calcium nitrate and triammonium phosphate as starting materials, for the preparation of water-dispersible hydroxyapatite nanorods (HAp) was reported. The process primarily involves the preparation of HAp with the addition of sodium citrate (NaC) and the exchange of absorbed ions (NaC) with sodium hexame taphosphate (NaP). The end products were investigated using various means in order to confirm the particles’ crystal phase and morphology and to understand how to improve their stability. The results demonstrate that the resulting HAp at 90 °C is rod-like with length of 300-400 nm and width of 40-60 nm. The zeta potential values of pure HAp, HAp-NaC, HAp-NaC/NaP are from −15.20, −30.89 to −44.84 mV. The settling time test shows the HAp-NaC/NaP could keep stable above 7 months without any creaming or visible sedimentation. The amount of NaC and the reaction temperature play significant roles in the whole process due to the formation of Ca containing precipitates.  相似文献   
9.
This work employed numerical experiments simulating colloid and solute transport in single parallel-plate fractures, using the random walk particle tracking method, to demonstrate that (1) there exists an aspect ratio of the colloid radius to half the fracture aperture, δo, where the average velocities of colloids and solutes are similar. When δ > δo, the velocity distribution assumption is satisfied, and the fact that the ratio of the colloid transport velocity to the solute transport velocity, τp, decreases as δ increases is well documented in the literature. However, when δ δo, the velocity distribution assumption is violated, and τp increases as δ increases and (2) the Taylor dispersion coefficient and its extension by James and Chrysikopoulos [S.C. James, C. V. Chrysikopoulos, J. Colloid Interface Sci. 263 (2003) 288] will overestimate the colloid dispersion coefficient significantly. Additionally, numerical experiments simulating colloid and solute transport in variable-aperture fractures demonstrated that τp and DL,coll/DL,solute decrease with increasing CoV, and the anisotropy ratio only plays a minor role compared to the CoV. These observations have important implications towards the interpretation of colloid transport in both porous and fractured media.  相似文献   
10.
The template-directed fabrication of highly-ordered porous film is of significant importance in implementation of the photonic band gap structure. The paper reports a simple and effective method to improve the electrodeposition of metal porous film by utilizing highly-ordered polystyrene spheres (PSs) template. By surface-modification method, the hydrophobic property of the PSs template surfaces was changed into hydrophilic one. It was demonstrated that the surface modification process enhanced the permeability of the electrolyte solution in the nanometer-sized voids of the colloidal template. The homogeneously deposited copper film with the highly-ordered voids in size of less than 500 nm was successfully obtained. In addition, it was found that large defects, such as microcracks in the template, strongly influenced the macroporous films quality. An obvious preferential growth in the cracked area was observed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号