首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
化学   3篇
  2019年   1篇
  2006年   1篇
  2004年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
Cobalt hexacyanoferrate of various compositions was prepared in flow mode and the role of the vacancy on the structure, thermogravimetric (TG) properties, and the adsorption efficiency was studied. The material, NayCo[Fe(CN)6]1−xz H2O, with a minimum vacancy of x=0.014 to the highest x=0.47, was obtained. The TG-differential scanning calorimetry (DSC) profile showed a distinct influence of the vacancy on the water release temperature. Materials with x>0.35 showed a smooth release of water at a relatively lower temperature. However, for the materials with x<0.35, water release took place in multiple steps, suggesting the existence of various forms of water. The FTIR profiles supported the existence of free and bonded water molecules. However, the materials with multiple water peaks in the FTIR spectra showed a shift of the major XRD peaks when heated at 285 °C in N2 atmosphere. Regarding the effect of the vacancy on the adsorption behavior, for NH4, the adsorption was found to be proportional to the number of Na atoms in the material, confirming the ion-exchange process. On the contrary, the materials with low vacancy and high Na content showed nominal Cs adsorption capacity. Interestingly, the K adsorption capacity was found to be in between that of the other two ions. This means the ionic size decides the rate of placement into the interstitial sites. For larger ions like Cs, the ease of percolation via the vacancy decides the overall adsorption efficiency.  相似文献   
2.
A cobalt hexacyanoferrate (CoHCF) nanoparticle (size ca. 60 nm) chemically modified electrode (CME) was fabricated and the electrochemical behavior of thiols at this nanosized CoHCF CME was studied. In comparison with a bare glassy carbon (GC) electrode and with a general CoHCF CME which was electrodeposited in the traditional manner, the present nanosized CoHCF CME efficiently performed electrocatalytic oxidation for glutathione (GSH) and L-Cysteine (L-Cys) with relatively high sensitivity, outstanding stability, and long-life. Combined with high-performance liquid chromatography (HPLC), the nanosized CoHCF CME was used for electrochemical determination (ECD) of GSH and L-Cys. The peak currents were a linear function of concentrations in the range 2.0×10–7 to 2.0×10–4 mol L–1 for both GSH and L-Cys, with detection limits of 1.2×10–7 and 1.0×10–7 mol L–1, respectively. Coupled with microdialysis sampling, the HPLC–ECD system has been successfully used to assess the GSH and L-Cys content of rat striatum.  相似文献   
3.
Qian L  Yang X 《Talanta》2006,69(4):957-962
A simple and convenient method for preparation of cobalt hexacyanoferrate (CoHCF) nanowires by electrodeposition was reported. Multiwall carbon nanotubes (MWNTs) were used as templates to fabricate CoHCF nanowires. MWNTs could affect the size of CoHCF nanoparticles and made them grow on the sidewalls of carbon nanotubes during the process of electrodeposition. Thus CoHCF nanowires could be obtained by this method. Field-emission scanning electron microscopy, UV-vis spectroscopy, Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy were used to characterize these nanowires. These results showed the CoHCF nanowires could be easily and successfully obtained and it gave a novel approach to prepare inorganic nanowires.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号