首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
化学   5篇
物理学   1篇
  2022年   1篇
  2020年   1篇
  2017年   1篇
  2013年   1篇
  2011年   1篇
  2005年   1篇
排序方式: 共有6条查询结果,搜索用时 0 毫秒
1
1.
Near infrared (NIR) spectrometry was used for the rapid characterization of quality parameters in desi chickpea flour (besan). Partial least square regression, principal component regression (PCR), interval partial least squares (iPLS), and synergy interval partial least squares (siPLS) were used to determine the protein, carbohydrate, fat, and moisture concentrations of besan. Spectra were collected in reflectance mode using a lab-built predispersive filter-based instrument from 700 to 2500?nm. The quality parameters were also determined by standard methods. The root mean square error (RMSE) for the calibration and validation sets was used to evaluate the performance of the models. The correlation coefficients for moisture, fat, protein, and carbohydrates in chickpea flour exceeded 0.96 using PLS and PCR models using the full spectral range. Wavelengths from 2100 to 2345?nm had the lowest RMSE for quality parameters by iPLS. The error was further decreased by 0.41, 0.1, and 1.1% for carbohydrates, fats, and proteins by siPLS. The NIR spectral regions yielding the lowest RMSE of prediction were 1620–2345?nm for carbohydrates, 1180–1590?nm and 1860–2094?nm for fat, and 1700–2345?nm for proteins. The study shows that chickpea flour quality parameters were accurately determined using the optimized wavelengths.  相似文献   
2.
The effects of radiation on the shoot and root lengths of germinated seedling of irradiated seeds of Cicer species, i.e. three kabuli types and four desi types of cultivated chickpea (Cicer arietinum Ladiz.) and 2 annual wild types (C. reticulatum Ladiz. and C. bijugum K.H. Rech.) were investigated. The seeds were irradiated with a 60Co gamma source using 0, 200, 300 and 400 Gy doses at 1.66 kGy h−1. At 200 Gy minor effects could be observed, but at 400 Gy an obvious depression of shoot length was observed. The kabuli types were more affected than the desi ones. The critical dose that prevented the shoot and root elongation varied among species and also ranged from genotypes to genotype within species.  相似文献   
3.
The effects of polysaccharide elicitor k-carrageenan obtained from Hypnea musciformis, red algae on the production of Induced Secondary Metabolites, ISMs (the disease resistance compounds) and on various growth characters of chickpea and maize plants were studied. Experiments were conducted in the field of PCSIR Laboratories Complex Karachi during December 2008–April 2009 in randomized complete block design with three replications. Three elicitor treatments were used, a solid preparation in which the elicitor was mixed with soil (T2 1 mg/g) and applied around the seeds in the soil. The two other preparations were liquid, T1 and T3 at a concentration of 100 μg glc eq ml−1 and were applied around the sowing seeds and as a foliar spray on the plants, respectively. Statistical analysis of the data revealed that these treatments significantly enhanced all the growth characters of chickpea except T2 that gave the nonsignificant difference in the plant height. Maximum plant height (80.3 cm), number of pods plant−1 (76.2), number of branches plant−1 (25.0), number of leaves plant−1 (125.6), earlier flowering and high ISMs contents in leaves, stem and grains of chickpea were recorded in T1 treated chickpea plants. In maize plants only T1 and T3 treatments (with minor exceptions) had significant effects on few characters like plant height, stem diameter, number of leaves plant−1 and on ISMs contents in leaves while number of cobs plant−1 and flowering time were nonsignificantly affected by these treatments. These results suggested that k-carrageenan elicitor can be used as a potent plant protectant as well as growth promoting agent especially for chickpea plants.  相似文献   
4.
5.
This study reports the development of non-dairy functional beverage emulsion employing ultrasound (US) of 20 kHz at 130 W and 195 W at processing times of 2 to 8 min using chickpea milk extract and bioactive, flaxseed oil (4%). The pre-emulsion was formed with high shear homogenizer followed by main sonication process. The sonicated emulsions were stored at 4 ± 2 °C till 14 days and characterized for physicochemical and functional properties. A comparative study was carried out using conventional high shear homogenizer (UT) at 10,000 RPM for 5 min. Upon optimization, 130 W − 8 min, 195 W − 6 min and 195 W – 8 min sono-emulsions showed creaming stability of 100%; with particle sizes as 1.12, 0.97 and 0.78 µm; and zetapotential values as − 40.4 mV, −37.52 and −36.91 mV, respectively. The improvement in protein solubility by 86% proved the emulsifying capability of chickpea proteins, which had partially denatured upon physical effects of acoustic cavitation producing stable and finer emulsion droplets. The reduced sedimentation values of sonicated chickpea extract in comparison to UT showed improvement in physical stability of plant-based milk. Oxidative stability is observed for 130 W − 8 min sonicated emulsions with no change in conjugated dienes, indicating the absence of process generated free radicals. The US process did not have any effect on reduction of stachyose content. But extracted chickpea milk had lower amount of stachyose in comparison to raw chickpeas, reducing the flatulence problem, mainly due to adaptation of high temperature pressure cooking process.  相似文献   
6.
BackgroundAllergy has become a key cause of morbidity worldwide. Although many legumes (plants in the Fabaceae family) are healthy foods, they may have a number of allergenic proteins. A number of allergens have been identified and characterized in Fabaceae family, such as soybean and peanut, on the basis of biochemical and molecular biological approaches. However, our understanding of the allergens from chickpea (Cicer arietinum L.), belonging to this family, is very limited.ObjectiveIn this study, we aimed to identify putative and cross-reactive allergens from Chickpea (C. arietinum) by means of in silico analysis of the chickpea protein sequences and allergens sequences from Fabaceae family.MethodsWe retrieved known allergen sequences in Fabaceae family from the IUIS Allergen Nomenclature Database. We performed a protein BLAST (BLASTp) on these sequences to retrieve the similar sequences from chickpea. We further analyzed the retrieved chickpea sequences using a combination of in silico tools, to assess them for their allergenicity potential. Following this, we built structure models using FUGUE: Sequence-structure homology; these models generated by the recognition tool were viewed in Swiss-PDB viewer.ResultsThrough this in silico approach, we identified seven novel putative allergens from chickpea proteome sequences on the basis of similarity of sequence, structure and physicochemical properties with the known reported legume allergens. Four out of seven putative allergens may also show cross reactivity with reported allergens since potential allergens had common sequence and structural features with the reported allergens.ConclusionThe in silico proteomic identification of the allergen proteins in chickpea provides a basis for future research on developing hypoallergenic foods containing chickpea. Such bioinformatics approaches, combined with experimental methodology, will help delineate an efficient and comprehensive approach to assess allergenicity and pave the way for a better understanding of the biological and medical basis of the same.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号