首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  国内免费   1篇
化学   2篇
物理学   1篇
  2020年   1篇
  2011年   1篇
  2009年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
张齐  戴伟  穆玮  张火利 《化学学报》2011,69(18):2148-2152
以乙烯和乙炔为探针分子, 采用原位红外光谱技术研究了Pd-Ag/Al2O3和Pd/Al2O3催化剂上乙炔加氢反应, 通过乙炔吸附, 乙炔和氢的共吸附和交替吸附表征了催化剂表面吸附物种的变化. 结果表明, 在Pd-Ag/Al2O3催化体系中, 乙炔在Pd-Ag/Al2O3和Pd/Al2O3催化剂有着不同的吸附性能, 另外, 加氢反应会导致在催化剂表面形成由长分子链的烷烃组成的碳氢化合物层, 该吸附层与绿油有着相似的红外光谱特征, 最关键的是乙炔和氢的吸附顺序和碳氢化合物层的生成量之间存在着一定的关系, 这将直接影响催化剂的加氢性能.  相似文献   
2.
Using density functional theory (DFT) we studied the adsorption of oxygen on gold and platinum fcc (1 1 1) surfaces as a function of coverage. We show how increasing coverages of oxygen atoms lead to a broadening of the surface atom d-bands and a consequent reduction in the average energy of the d-band center due to conservation of the d-band filling. The reduction in the energy of the d-band center leads to a correlated increase (weakening) in the adsorption energy. This underlying electronic structure relationship exists on both the gold and platinum surfaces, and we show that the coverage dependent adsorption energies of oxygen on these two surfaces are related by a simple near-linear correlation.  相似文献   
3.
The oxidation of carbon monoxide (CO) has received more attention in the last two to three decades owing to its importance in different fields. To control this CO pollution, catalytic converters have been investigated. Different types of catalysts have been used in a catalytic converter for CO emission control purposes. Platinum (Pt)-based noble metal catalysts show great potential for CO oxidation in catalytic converters with high thermal stability and tailoring flexibility. Pt metal catalysts modified with promoters such as alkali metals and reducible metal oxides have received great attention for their superior catalytic activities in CO oxidation. Temperature, close environment of the catalyst, and chemical composition in the surface layer of the catalyst have a huge effect on the active phase dispersion and O2 adsorption capacity of the Pt metal catalysts. The main difference in activities of Pt metal catalyst for CO oxidation in O2 or H2 atmosphere has found. The addition of supports in Pt metal catalysts has improved their performances and reduced their cost. These improvement strongly depends on the surface structure, morphology, number of active sites, and various Pt-O interactions. Many research articles have already been published in CO oxidation over Pt metal catalysts, but no review article dedicated to CO oxidation is available in the literature.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号