首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   0篇
化学   29篇
物理学   7篇
  2020年   2篇
  2016年   1篇
  2014年   1篇
  2013年   4篇
  2011年   2篇
  2010年   1篇
  2009年   3篇
  2008年   2篇
  2007年   3篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  2001年   1篇
  2000年   1篇
  1997年   1篇
  1995年   2篇
  1994年   1篇
  1992年   3篇
  1991年   1篇
  1988年   1篇
  1987年   1篇
排序方式: 共有36条查询结果,搜索用时 15 毫秒
1.
Upreti P  Metzger LE  Bühlmann P 《Talanta》2004,63(1):139-148
While there is a considerable interest in the food industry in determining various analytes using ion-selective electrodes (ISEs), only few reports describe their use for direct measurements in food. In this study, the suitability of glass electrodes and ionophore-based solvent polymeric ISEs for the determination of pH in Process cheese, Cheddar cheese and milk was investigated. The liquid junction potential between a 3 M KCl bridge electrolyte and diluted as well as undiluted Process cheese was found to be negligible. Reference electrodes with ceramic plug and sleeve-type junctions performed well, although precautions needed to be taken to prevent plugging at the junctions. While the protein rennet casein posed no problems in pH measurements, the extraction of neutral lipophilic compounds or hydrophobic peptides into solvent polymeric membranes was evident, resulting in some loss of selectivity for monovalent cations upon exposure to cheese. However, it was found that ISEs based on tridodecylamine (R3N) as ionophore and o-nitrophenyl octyl ether (oNPOE) as plasticizer can be used to accurately measure the pH of milk and, after desensitization of the electrodes in a cheese emulsion, of diluted Process cheese. Since pH measurements with a glass electrode showed that emulsions of cheese moderately diluted to a cheese content of 70% have the same pH as undiluted cheeses, it is possible to determine the pH in cheese with ionophore-based ISEs. R3N membranes also performed well in undiluted milk.  相似文献   
2.
A kinetic model for single-cell protein batch fermentation was developed using the numerical simultaneous integration approach of the fourth-order Runge-Kutta method. The model takes into account the effect of substrate inhibtion, maintenance energy, and cell death on the cell growth and substrate utilization during the fermentation process. The theoretical results obtained from the model compared well with the experimental data. The model was used to study the effect of the initial substrate concentration on the lag period, fermentation time, specific growth rate, population size, and cell productivity of batch fermentation. Increasing the initial substrate concentration increased the lag period and fermentation time and decreased the specific growth rate and cell yield. The growth limiting substrate concentration was 2.9 g/L, whereas the growth inhibiting substrate concentration was 69.0 g/L. Increasing the initial substrate concentration above 150 g/L significantly decreased the yeast population size.  相似文献   
3.
J. Saldo  E. Sendra  B. Guamis 《高压研究》2013,33(3-4):659-663

High hydrostatic pressure (HHP) treatment of cheese intended to accelerate ripening. Along with increased proteolysis, some other parameters were affected, colour being one of them. Right after HHP and at the end of ripening time, Hunterlab colour parameters were very similar in both control and cheese treated at 400 MPa, but during ripening they evolved in a different way. HHP-treated cheese had lower lightness and higher chroma values than control cheese and both characteristics were unexpectedly associated to higher moisture values. Those differences are attributed to changes in cheese microstructure.  相似文献   
4.
PHB-silver nanocomposite (PHB-AgNc) was synthesized biologically by utilizing a dairy-industry by-product, cheese whey permeate as a substrate for Bacillus megaterium. The single-step synthesis of PHB-AgNc was further confirmed by UV–vis spectroscopy and GC-MS analysis. Further, the extracted PHB-Ag Nc was characterized by employing various techniques such as TEM, SEM, FTIR, NMR, Zeta Potential, and DLS analysis. Mechanical properties such as elongation at break, tensile strength, and Young's Modulus were found to be 1.305%, 35.42, and 1.058 N/mm2, respectively. The nanocomposite was found to be stable, polydispersive, and hydrophobic. It exhibited a degradation temperature of 340 °C and portrayed significant antimicrobial resistance against common food pathogens such as E.coli and Pseudomonas spp. Batch fermentation study was carried out for a period of 96 h in a 14 L bioreactor. The highest biomass and nanocomposite yield obtained was 5.8 and 2.4 g/L, respectively. The highest product productivity concerning biomass was found to be 0.012 h−1 at 12 h. The film's migration properties were tested for various food stimulants, and the values obtained were less than the overall migration limit established for food contact materials; hence, the film was found to be appropriate for food packaging applications.  相似文献   
5.
The processes of lactic acid production include two key stages, which are (a) fermentation and (b) product recovery. In this study, free cell of Bifidobacterium longum was used to produce lactic acid from cheese whey. The produced lactic acid was then separated and purified from the fermentation broth using combination of nanofiltration and reverse osmosis membranes. Nanofiltration membrane with a molecular weight cutoff of 100–400 Da was used to separate lactic acid from lactose and cells in the cheese whey fermentation broth in the first step. The obtained permeate from the above nanofiltration is mainly composed of lactic acid and water, which was then concentrated with a reverse osmosis membrane in the second step. Among the tested nanofiltration membranes, HL membrane from GE Osmonics has the highest lactose retention (97 ± 1%). In the reverse osmosis process, the ADF membrane could retain 100% of lactic acid to obtain permeate with water only. The effect of membrane and pressure on permeate flux and retention of lactose/lactic acid was also reported in this paper.  相似文献   
6.
The fine-tuning of the enzymatic hydrolysis of proteins may provide a pool of peptides with predefined molar mass distributions. However, the complex mixture of molecules (peptides and amino acids) that results after the proteolysis of cheese whey turns unfeasible the assessment of individual species. In this work, a hybrid kinetic model for the proteolysis of whey by alcalase, multipoint-immobilized on agarose, is presented, which takes into account the influence of pH (8.0-10.4) and temperature (40-55 degrees C) on the activity of the enzyme. Five ranges of peptides' molar mass have their reaction rates predicted by neural networks (NNs). The output of NNs trained for constant pH and temperatures was interpolated, instead of including these variables in the input vector of a larger NN. Thus, the model complexity was reduced. Coupled to differential mass balances, this hybrid model can be employed for the online inference of peptides' molar mass distributions. Experimental kinetic assays were carried out using a pH-stat, in a laboratory-scale (0.03 L) batch reactor. The neural-kinetic model was integrated to a supervisory system of a bench-scale continually stirred tank reactor (0.5 L), providing accurate predictions during validation tests.  相似文献   
7.
The performance of immobilized Bifidobacterium longum in sodium alginate beads and on a spiral-sheet bioreactor for the production of lactic acid from cheese whey was evaluated. Lactose utilization and lactic acid yield of B. longum were compared with those of Lactobacillus helveticus. B. longum immobilized in sodium alginate beads showed better performance in lactose utilization and lactic acid yield than L. helveticus. In the spiral-sheet bioreactor, a lactose conversion ratio of 79% and lactic acid yield of 0.84 g of lactic acid/g of lactose utilized were obtained during the first run with the immobilized L. helveticus. A lactose conversion ratio of 69% and lactic acid yield of 0.51 g of lactic acid/g of lactose utilized were obtained during the first run with immobilized B. longum in the spiral-sheet bioreactor. In producing lactic acid L. helveticus performed better when using the Spiral Sheet Bioreactor and B. longum showed better performance with gel bead immobilization. Because B. longum is a very promising new bacterium for lactic acid production from cheese whey, its optimum fermentation conditions such as pH and metabolic pathway need to be studied further. The ultrafiltration tests have shown that 94% of the cell and cheese whey proteins were retained by membranes with a mol wt cutoff of 5 and 20 KDa.  相似文献   
8.
Determination of the individual fatty acid composition of neutral- and phospholipids as well as the phospholipid content of dairy food and other foodstuffs are important tasks in life sciences. For these purposes, a method was developed for the separation of lipids (standards of triolein and diacylphosphatidylcholines as well as three cheese samples) by solid-phase extraction using a self-packed column filled with partly deactivated silica. Non-halogenated solvents were used for the elution of the lipid classes. Cyclohexane/ethyl acetate (1:1, v/v) served for the elution of neutral lipids, while polar lipids were eluted with three solvents (ethyl acetate/methanol, methanol, and methanol/water) into one fraction. The separated lipid fractions were transesterified and the individual fatty acids were quantified by using gas chromatography coupled to electron ionization mass spectrometry (GC/EI-MS) in the selected ion monitoring (SIM) mode. The recovery rate for standard phosphatidylcholines was ∼90% and cross-contamination from neutral lipids was negligible. The method was applied to cheese samples. Quantitative amounts of individual fatty acids in the phospholipid fraction were <0.002-0.29% of total lipids from camembert, <0.002-0.12% of total lipids from mozzarella, and <0.002-0.18% of total lipids in a goat cream cheese. Differences in the fatty acid pattern of neutral and polar lipids were detected. The quantity of the fatty acids determined in the phospholipid fraction was divided by the factor 0.7 in order to convert the fatty acid content into the phospholipid content of the cheese samples. This factor is based on the contribution of 16:0 to dipalmitoylphosphatidylcholine (DPPC). The resulting DPPC equivalents (DPPCeq) were found to be representative for the average contribution of fatty acids to all classes of phospholipids in dairy products. Using this approach, the phospholipid content of lipids from mozzarella, camembert, and goat cream cheese was 0.60%, 1.42% and 0.79%, respectively.  相似文献   
9.
A RP-HPLC method for the analysis of oxalic, citric, formic, succinic, orotic, uric, pyruvic, acetic, propionic, lactic and butyric acids in dairy products with a simple treatment of the sample has been developed. A gradient programme pumping phosphate buffer at pH 2.20 and acetonitrile was used to separate the compounds on a C18 column. Various parameters affecting analysis have been optimised to take < 18 min with an excellent linearity (R > 0.999). The precision was good (R.S.D. < 5%) and the recovery found close to 100%. Its application to analyse the quality of some dairy products has been investigated.  相似文献   
10.
This study examined the production of protein hydrolysates with controlled composition from cheese whey proteins. Cheese whey was characterized and several hydrolysis experiments were made using whey proteins and purified β-lactoglobulin, assubstrates, and trypsin and α-chymotrypsin, as catalysts, at two tem peratures and several enzyme concentrations. Maximum degrees of hydrolysis obtained experimentally were compared to the theoretical values and peptide compositions were calculated. For trypsin, 100% of yield was achieved; for α-chymotrypsin, hydrolysis seemed to be dependent on the oligopeptide size. The results showed that the two proteases could hydrolyze β-lactoglobulin. Trypsin and α-chymotrypsin were stable at 40°C, but a sharp decrease in the protease activity was observed at 55°C.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号