首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   0篇
化学   27篇
物理学   1篇
  2021年   1篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2009年   1篇
  2007年   4篇
  2006年   1篇
  2005年   3篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   3篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
排序方式: 共有28条查询结果,搜索用时 46 毫秒
1.
The structure of 2,4-dibromo-2-dibromomethyl-3,3-dimethyl-1-selena-3-silacyclopentene-4, formed by regioselective electrophilic addition of SeBr4 to dimethyl diethynyl silane, has been determined using X-ray analysis technique. Quantum chemistry methods were used to study elementary stages of the reaction. It was found that the first stage consisted of SeBr4 conversion into bimolecular complex Br2?SeBr2, initiated by dimethyl diethynyl silane. Possible formation of five-membered and six-membered heterocycles involves different cyclization mechanisms. The formation of only five-membered heterocycle is explained by kinetically preferable ring closure through four-center transition state. The conclusions obtained by calculations were confirmed by monitoring of the reaction using 1H NMR method.  相似文献   
2.
The synthesis of 6-ami no-5-nitro-4-thioxo-pyrimidines starting from the C-adducts of nitro-keteneaminals and acyl isothiocyanates is described.  相似文献   
3.
The reductive reactivity of the (BPh4)1− ligand in pentamethylcyclopentadienyl [(C5Me5)2U][(μ-η21-Ph)2BPh2] (1) was compared with that of the tetramethyl analog, [(C5Me4H)2U][(μ-η61-Ph)(μ-η11-Ph)BPh2] (2) using PhSSPh as a probe to determine if the mode of (BPh4)1− bonding affected the reduction. Both complexes act as two-electron reductants to form (C5Me4R)2U(SPh)2 [R = Me, 3; H, 4], but only in the R = H case could the product be crystallographically characterized. An improved synthesis of 1 from [(C5Me5)2UH]2 (5) and [Et3NH][BPh4] is also reported as well as its reaction with MeCN that provides another route to the unusual, parallel-ring, uranium metallocene [(C5Me5)2U(NCMe)5][BPh4]2 (6).  相似文献   
4.
The synthesis and structural characterization of a family of calcium thiolates and selenolates is described. In the solid state the compounds adopt either contact pairs, as observed in Ca(THF)4(SMes*)2 ( 1 ), (Mes* 2,4,6‐tBu3C6H2), and Ca(THF)4(SeMes*)2, ( 2 ), or separated ions as shown in [Ca(18‐crown‐6)(HMPA)2][SeMes*]2 ( 3 ). The two different ion association modes are induced by addition of specific donors. The compounds were prepared by metalation involving the reaction of elemental calcium dissolved in dry liquid ammonia with either HSMes* or Mes*SeSeMes*. All compounds were characterized by X‐ray crystallography, NMR and IR spectroscopy.  相似文献   
5.
Diffractograms with twelvefold rotational symmetry (depicted on the right) were obtained from the first quasicrystalline chalcogenide Ta1.6Te. This compound was prepared on a preparative scale by the reduction of TaTe2 with tantalum below 1870 K. This tantalum-rich telluride, which is the first stable dodecagonal phase, has enabled an in-depth investigation of this unusual state of ordering.  相似文献   
6.
A quantitative low energy electron diffraction (LEED) analysis has been performed for the p(2 × 2)-S and c(2 × 2)-S surface structures formed by exposing the (1 × 1) phase of Ir{1 0 0} to H2S at 750 K. S is found to adsorb on the fourfold hollow sites in both structures leading to Pendry R-factor values of 0.17 for the p(2 × 2)-S and 0.16 for the c(2 × 2)-S structures. The distances between S and the nearest and next-nearest Ir atoms were found to be similar in both structures: 2.36 ± 0.01 Å and 3.33 ± 0.01 Å, respectively. The buckling in the second substrate layer is consistent with other structural studies for S adsorption on fcc{1 0 0} transition metal surfaces: 0.09 Å for p(2 × 2)-S and 0.02 Å for c(2 × 2)-S structures. The (1 × 5) reconstruction, which is the most stable phase for clean Ir{1 0 0}, is completely lifted and a c(2 × 2)-S overlayer is formed after exposure to H2S at 300 K followed by annealing to 520 K. CO temperature-programmed desorption (TPD) experiments indicate that the major factor in the poisoning of Ir by S is site blocking.  相似文献   
7.
The ionic complex [Ga{N(SPiPr2)(SePiPr2)-S, Se}2]+[GaCl4] (5) was prepared by a ligand redistribution process from the mono-chelate [Cl2Ga{N(SPiPr2)(SePiPr2)-S, Se}] (3) complex in benzene. A similar phenomenon was observed for the heavier indium homologues, where the neutral complexes [ClIn{N(SPiPr2)(SePiPr2)-S, Se}2] (7) and [ClIn{N(OPiPr2)(SPiPr2)-O, S}2] (8) were isolated along with InCl3 as the main reaction by-product. Complexes 5, 7 and 8 were characterized by single-crystal X-ray structural analysis.  相似文献   
8.
The Formation of Gallium Chalcogen Heterocubanes by the Reaction of the Alkylgallium(I) Compound Ga4[C(SiMe3)3]4 with Sulfur, Selenium, and Tellurium The alkylgallium(I) compound Ga4[C(SiMe3)3]4 1 , which monomerizes in dilute solutions, reacts with elemental sulfur, selenium, and tellurium in boiling n-hexane to yield the corresponding Ga4X4R4 cage compounds in a high yield. As shown by crystal structure determinations, the products have distorted Ga4X4 heterocubanes in their molecular centers with a slightly increasing distortion for the heavier chalcogen atoms. While the selenium and tellurium derivatives show a very low solubility in benzene, the sulfur compound dissolves readily accompanied by the dissociation into the (RGaS)2 dimer.  相似文献   
9.
Treatment of 1,8‐bis(diphenylphosphino)naphthalene (dppn, 1 ) with stoichiometric amounts of sulfur or selenium in toluene at 80 °C selectively afforded the diphosphine monochalcogenides 1‐Ph2P(C10H6)‐8‐P(:S)Ph2 (dppnS, 2 a ) and 1‐Ph2P(C10H6)‐8‐P(:Se)Ph2 (dppnSe, 2 b ). The 31P{1H} NMR spectrum of 2 b showed an unusually large 5J(P–Se) value, which indicates a significant through‐space coupling component. The monosulfide acted as a bidentate P,S‐ligand towards platinum(II) ( 3 a ), whereas the corresponding monoselenide complex ( 3 b ′) lost elemental selenium with formation of the previously reported complex [PtCl2(dppn)‐P,P′] ( 3 ). Treatment of dppnSe with [(nor)Mo(CO)4] (nor = norbornadiene) led to formation of [(dppnSe)Mo(CO)4P,Se] ( 3 b ). Solutions of the latter slowly deposited Se with formation of [(dppn)Mo(CO)4P,P′] ( 4 ) which was also obtained by independent synthesis from 1 and [(nor)Mo(CO)4]. All isolated new compounds were characterised by a combination of 31P, 1H, 13C and 77Se ( 2 b ) NMR spectroscopy, IR spectroscopy, mass spectrometry and elemental analysis. Single‐crystal X‐ray structure determinations were performed for dppnSe ( 2 b ), [PtCl2(dppnS)‐P,S] ( 3 a ), [(dppnSe)Mo(CO)4P,Se] ( 3 b ) and [(dppn)Mo(CO)4P,P′] ( 4 ). In 2 b steric effects cause the naphthalene ring to be distorted and force the phosphorus atoms by 65 and 59 pm to opposite sides of the best naphthalene plane. In the metal complexes 3 a , 3 b and 4 the phosphino‐phosphinochalcogenyl systems act as bidentate ligands through the P and the chalcogen atoms. The naphthalene systems are again distorted. The two independent molecules of 4 differ in their conformations.  相似文献   
10.
Two mechanistic pathways for chalcogens transfer from P(V) to P(III) compounds were explored using density functional theory calculations and for both of them the corresponding transition states were identified. The calculations showed that transfer of sulfur and selenium proceeds most likely via an X-philic attack of the phosphorus nucleophile on the chalcogen, while for the oxygen transfer reaction, a mechanism involving a three-membered cyclic transition state is equally likely.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号