首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2227篇
  免费   146篇
  国内免费   185篇
化学   1814篇
晶体学   19篇
力学   56篇
综合类   4篇
数学   64篇
物理学   601篇
  2024年   4篇
  2023年   22篇
  2022年   43篇
  2021年   69篇
  2020年   98篇
  2019年   42篇
  2018年   58篇
  2017年   75篇
  2016年   109篇
  2015年   82篇
  2014年   89篇
  2013年   193篇
  2012年   76篇
  2011年   126篇
  2010年   113篇
  2009年   142篇
  2008年   183篇
  2007年   122篇
  2006年   135篇
  2005年   128篇
  2004年   131篇
  2003年   84篇
  2002年   71篇
  2001年   49篇
  2000年   35篇
  1999年   36篇
  1998年   38篇
  1997年   45篇
  1996年   25篇
  1995年   22篇
  1994年   29篇
  1993年   15篇
  1992年   13篇
  1991年   6篇
  1990年   7篇
  1989年   5篇
  1988年   6篇
  1987年   7篇
  1986年   5篇
  1985年   5篇
  1984年   2篇
  1983年   1篇
  1982年   3篇
  1981年   3篇
  1980年   4篇
  1977年   1篇
  1972年   1篇
排序方式: 共有2558条查询结果,搜索用时 15 毫秒
1.
The requirement of green and sustainable materials to prepare heterogeneous catalysts has intensified for practical reasons over the past few decades. Carbohydrates are possibly the most plentiful and renewable organic materials in nature with inimitable physiochemical properties, plausible low-cost and large-scale production, and sustainability features could be exploited in the generation of nanostructured heterogeneous catalysts. This review article outlines the organic transformations catalyzed by diverse carbohydrate-based nanostructured catalysts in greener and environmentally friendly processes. Selected examples are highlighted for a variety of organic reactions exploiting the proposed catalysts’ reactivity and reusability, and interactions with the intrinsic nature of the applied carbohydrate supports; advantages and speculated challenges of the introduced catalysts are deliberated as well.  相似文献   
2.
In this study, parenchyma cellulose, which was extracted from maize stalk pith as an abundant source of agricultural residues, was applied for preparing cellulose nanoparticles (CNPs) via an ultrasound-assisted etherification and a subsequent sonication process. The ultrasonic-assisted treatment greatly improved the modification of the pith cellulose with glycidyltrimethylammonium chloride, leading to a partial increase in the dissolubility of the as-obtained product and thus disintegration of sheet-like cellulose into nanoparticles. While the formation of CNPs by ultrasonication was largely dependent on the cellulose consistency in the cationic-modified system. Under the condition of 25% cellulose consistency, the longer sono-treated duration yielded a more stable and dispersible suspension of CNP due to its higher zeta potential. Degree of substitution and FT-IR analyses indicated that quaternary ammonium salts were grafted onto hydroxyl groups of cellulose chain. SEM and TEM images exhibited the CNP to have spherical morphology with an average dimeter from 15 to 55 nm. XRD investigation revealed that CNPs consisted mainly of a crystalline cellulose Ι structure, and they had a lower crystallinity than the starting cellulose. Moreover, thermogravimetric results illustrated the thermal resistance of the CNPs was lower than the pith cellulose. The optimal CNP with highly cationic charges, good stability and acceptable thermostability might be considered as one of the alternatively renewable reinforcement additives for nanocomposite production.  相似文献   
3.
Electrospun nonwovens of poly(L-lactide) (PLLA) modified with multiwall carbon nanotubes (MWCNT) and linear ladder-like poly(silsesquioxane) with methoxycarbonyl side groups (LPSQ-COOMe) were obtained. MWCNT and LPSQ-COOMe were added to the polymer solution before the electrospinning. In addition, nonwovens of PLLA grafted to modified MWCNT were electrospun. All modified nonwovens exhibited higher tensile strength than the neat PLA nonwoven. The addition of 10 wt.% of LPSQ-COOMe and 0.1 wt.% of MWCNT to PLLA increased the tensile strength of the nonwovens 2.4 times, improving also the elongation at the maximum stress.  相似文献   
4.
We discuss the problem of transmitting polarized pulses along optical fibers with variable dispersion. The dissipation and mean dispersion are assumed to be zero, which allows using the model of the vector nonlinear Schrödinger equation. We consider an optical fiber consisting of arms of equal length, which is assumed to be large. We propose an asymptotic recursive procedure for calculating the amplitude and the phase of an optical pulse propagating along the optical cable with variable dispersion.  相似文献   
5.
Two kinds of water-soluble metallophthalocyanines, binuclear cobalt phthalocyanine (Co2Pc2) and binuclear ferric phthalocyanine (Fe2Pc2), were synthesized through phenylanhydride-urea route and characterized by elemental analysis and FT-IR spectra. Binuclear metallophthalocyanine derivatives (Mt2Pc2) were immobilized on silk fibers and modified viscose fibers to construct bioactive fibers of mimic enzyme. Mt2Pc2 was used as the active center of bioactive fibers, viscose and silk fibers as the microenvironments. The catalytic oxidation ability of bioactive fibers on the malodors of methanthiol and hydrogen sulfide was investigated at room temperature. The experimental results indicated that the catalytic activity of such bioactive fibers was closely correlative to the types ofbioactive fibers and substrates.  相似文献   
6.
Nylon‐6/glass‐fiber (GF)/liquid‐crystalline‐polymer (LCP) ternary blends with different viscosity ratios were prepared with three kinds of nylon‐6 with different viscosities as matrices. The rheological behaviors of these blends were characterized with capillary rheometry. The morphology was observed with scanning electron microscopy and polarizing optical microscopy. This study showed that although LCP did not fibrillate in binary nylon‐6/LCP blends, LCP fibrillated to a large aspect ratio in some ternary blends after GF was added. The addition of 5 wt % LCP significantly reduced the melt viscosity of nylon‐6/GF blends to such an extent that some nylon‐6/GF/LCP blends had quite low viscosities, not only lower than those of neat resins and nylon‐6/GF blends but also lower than those of corresponding nylon‐6/LCP blends. The mutual influence of the morphology and rheological properties was examined. The great reduction of the melt viscosity was considered the result of LCP fibrillation. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1619–1627, 2004  相似文献   
7.
Although there have been many reports on the preparation and applications of various polymer nanofibers with the electrospinning technique, the understanding of synthetic parameters in electrospinning remains limited. In this article, we investigate experimentally the influence of solvents on the morphology of the poly(vinyl pyrrolidone) (PVP) micro/nanofibers prepared by electrospinning PVP solution in different solvents, including ethanol, dichloromethane (MC) and N,N‐dimethylformamide (DMF). Using 4 wt % PVP solutions, the PVP fibers prepared from MC and DMF solvents had a shape like a bead‐on‐a‐string. In contrast, smooth PVP nanofibers were obtained with ethanol as a solvent although the size distribution of the fibers was somewhat broadened. In an effort to prepare PVP nanofibers with small diameters and narrow size distributions, we developed a strategy of using mixed solvents. The experimental results showed that when the ratio of DMF to ethanol was 50:50 (w/w), regular cylindrical PVP nanofibers with a diameter of 20 nm were successfully prepared. The formation of these thinnest nanofibers could be attributed to the combined effects of ethanol and DMF solvents that optimize the solution viscosity and charge density of the polymer jet. In addition, an interesting helical‐shaped fiber was obtained from 20 wt % PVP solution in a 50:50 (w/w) mixed ethanol/DMF solvent. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3721–3726, 2004  相似文献   
8.
Electrospinning of cellulose acetate (CA) in a new solvent system and the deacetylation of the resulting ultrafine CA fibers were investigated. Ultrafine CA fibers (∼2.3 μm) were successfully prepared via electrospinning of CA in a mixed solvent of acetone/water at water contents of 10–15 wt %, and more ultrafine CA fibers (0.46 μm) were produced under basic pH conditions. Ultrafine cellulose fibers were regenerated from the homogeneous deacetylation of ultrafine CA fibers in KOH/ethanol. It was very rapid and completed within 20 min. The crystal structure, thermal properties, and morphology of ultrafine CA fibers were changed according to the degree of deacetylation, finally to those of pure cellulose, but the nonwoven fibrous mat structure was maintained. The activation energy for the deacetylation of ultrafine CA fibers was 10.3 kcal/mol. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 5–11, 2004  相似文献   
9.
沈为民  张艺 《光学学报》1998,18(12):741-1745
提出了折射率温敏式光纤温度传感器的理论模型,包括子午光线和偏射光线的影响,讨论了多模光纤的弯曲损耗,理论的分析和结果与实验相当一致。  相似文献   
10.
Summary A rapid, robust and reproducible method providing excellent separation performance and simplicity using a 0.5% MC-4000 methyl cellulosic sieving medium in DB-1 coated capillaries has been developed. The method is suitable for qualitative comparison of DNA restriction profiles for fragments in the size range 100–1000 base pairs (bp). Efficiencies up to 8.5 million plates/m (1057 bp fragment) were recorded. Peak resolution of 6 bp (291/297 bp, 335/341 bp) and 4 bp (238/242 bp, 341/345 bp) was achieved. In addition, 1 bp partial resolution of 123/124 bp and 298/297 bp was obtained. Run-to-run (n=15), day-to-day (n=4), and capillary-to-capillary (n=3) variations of 0.1–0.2% RSD, 0.3–0.5% RSD, and 0.1–0.3% RSD, respectively, were observed. The MC-4000 sieving matrix was found to be better than hydroxypropyl methyl cellulose and hydroxypropyl cellulose, in terms of both performance and stability in the DB-1 coated capillaries. The efficiency and resolution in DB-WAX capillaries were inferior to those obtained in DB-1 capillaries. The commercially available DB-1 capillaries were stable for months in the sieving medium at pH 8.3 and could be regenerated to provide high efficiency after accidental current breaks.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号