首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
化学   2篇
  2011年   2篇
排序方式: 共有2条查询结果,搜索用时 62 毫秒
1
1.
An expedient synthesis of 2-deoxy (10) and 3-deoxy (11) cyclohexenyl analogues of 2-deoxy and 3-deoxy-d-ribose sugar from commercially available starting materials is reported. Highly efficient enzymatic resolution of the key compound 10 is described using lipase under hydrolytic conditions. The robust methodology applied here will be useful to synthesize cyclohexenyl nucleosides, which possess potent antiviral activity and are capable of gene silencing via RNAi or antisense applications.  相似文献   
2.
Cyclohexenyl nucleic acids (CeNA) are characterised by the carbon–carbon double bond replacing the O4′‐oxygen atom of the natural D ‐2′‐deoxyribose sugar ring in DNA. CeNAs exhibit a high conformational flexibility, are stable against nuclease activity and their hybridisation is RNA selective. Additionally, CeNA has been shown to induce an enhanced biological activity when incorporated in siRNA. This makes CeNA a good candidate for siRNA and synthetic aptamer applications. The crystal structure of the synthetic CeNA:RNA hybrid ce(GCGTAGCG):r(CGCUACGC) has been solved with a resolution of 2.50 Å. The CeNA:RNA duplex adopts an anti‐parallel, right‐handed double helix with standard Watson–Crick base pairing. Analyses of the helical parameters revealed the octamer to form an A‐like double helix. The cyclohexenyl rings mainly adopt the 3H2 conformation, which resembles the C3′‐endo conformation of RNA ribose ring. This C3′‐endo ring puckering was found in most of the RNA residues and is typical for A‐family helices. The crystal structure is stabilised by the presence of hexahydrated magnesium ions. The fact that the CeNA:RNA hybrid adopts an A‐type double helical conformation confirms the high potential of CeNAs for the construction of efficient siRNAs which can be used for therapeutical applications.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号