首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
  国内免费   1篇
化学   14篇
物理学   1篇
  2017年   2篇
  2014年   1篇
  2013年   1篇
  2011年   1篇
  2010年   6篇
  2009年   1篇
  1998年   1篇
  1996年   1篇
  1987年   1篇
排序方式: 共有15条查询结果,搜索用时 821 毫秒
1.
Cardanol-aldehyde condensation polymer containing boron-nitrogen co-ordinate bond (CFBN) has been synthesized and characterized by IR, XPS, HPLC andDTA-TG. Its properties were also investigated. The results show that the coating filmof CFBN has excellent physico-mechanical properties, good anticorrosive properties andstable at high temperature.  相似文献   
2.
《中国化学会会志》2017,64(10):1181-1189
Following the principles of green chemistry, cardanol derivatives have been used as renewable, low‐cost, and available natural starting materials to construct a variety of protected and unprotected amino acids derivatives. The reaction of cardanol derivatives with different phthaloylamino acids including glycine, alanine, phenylalanine, and valine in the presence N,N'‐ dicyclohexylcarbodiimide (DCC ) as coupling reagent afforded high yields of the target compounds. Deprotection of phthaloylamino acids derivatives was achieved by heating with hydrazine hydrate. The chemical structures of all products were confirmed by spectral data (IR , MS , 1H NMR , 13C NMR ) and elemental analyses. Antibacterial evaluation of the synthesized products was performed, which exhibited potent to weak activity in comparison with a standard drug.  相似文献   
3.
A unique advanced intermediate: 3-Pentadecylcyclohexanone was synthetized from the crude product which contained a mixture of cardanol, cardol and 2-methylcardol, which was hydrogenated onto Pd/C at 80 °C. From this alkylated cyclohexanone: C15 alkylated adipic acid, caprolactam, caprolactone, were synthetized in high yields, such products may have many potentially applications in polymer chemistry. The condensation of the 3-pentadecyl-cyclohexanone and triethylene glycol in oxidative or reductive conditions gave aryl ether and cyclohexyl ether, this may be a way to prepare intermediate for surfactant chemistry. Therefore we show that Cashew Nut Shell Liquid (CNSL) may lead to numerous useful compounds thank to the preparation of a unique advanced intermediate.  相似文献   
4.
5.
Anacardium occidentale belongs to the family Anacardiaceae and is principally grown in tropical America (Mexico, Peru, Brazil, etc.) and India. Cashew nuts contain low amounts of hydroxy alkyl phenols that come from an oily liquid present in their shell and that is known as cashew-nut shell liquid. This paper reports the alkyl phenols composition of cold pressed raw and roasted cashew nut oil. First of all, cashew nut shell liquid was used for a basic fractionation of the alkyl phenol classes by preparative TLC and definitively identified by GC-MS and GC-FID. Anacardic acids were the major alkylphenols contained in both oils followed by cardol, cardanol and 2-methylcardol compounds, respectively. Raw and roasted oils did not show different compositions except for cardanols. The oil produced from roasted cashew nut reported a higher concentration of cardanols. Furthermore, tocopherols and other minor polar compounds were determined by HPLC-FLD and HPLC-DAD-MS, respectively. Tocopherol content varied in a range of 171.48-29.56mg/100g from raw to roasted cashew nut oil, being β-tocopherol the one which presented a higher decrease (93.68%). Also minor polar compounds in cashew oil decreased after roasting from 346.52 to 262.83mg/kg.  相似文献   
6.
A sulfonate (2,4-sodium dissulfonate-5-n-pentadecylphenol) was synthesized from hydrogenated cardanol and the micellization study was carried out using temperature and electrolyte concentration as variables. The adsorption parameters were obtained using surface tension data by the Frumkin adsorption model and the Simplex Nelder–Mead method. Values of critical micelle concentration (cmc) and surface excess (Γ) were obtained in three different temperatures (303 K, 313 K, and 323 K) and two electrolyte concentrations (NaCl solution—0.1 M and 0.25 M). It was verified that cmc decreased with increasing electrolyte concentration and temperature. The Gibbs free energy showed that the micellization process was spontaneous for all studied systems and temperatures, and also that the presence of several CH2 groups was significant for micelle formation.  相似文献   
7.
A new aromatic diacid monomer viz., 4-(4′-carboxyphenoxy)-2-pentadecylbenzoic acid was synthesized starting from cardanol and was characterized by FTIR, 1H- and 13C NMR spectroscopy. A series of new aromatic polyamides containing ether linkages and pendant pentadecyl chains was prepared by phosphorylation polycondensation of 4-(4′-carboxyphenoxy)-2-pentadecylbenzoic acid with five commercially available aromatic diamines viz., 1,4-phenylenediamine, 4,4′-oxydianiline, 4,4′-methylenedianiline, 1,3-phenylenediamine, and 4,4′-(hexafluoroisopropylidene)dianiline. Inherent viscosities of the polyamides were in the range 0.45-0.66 dL/g in N,N-dimethylacetamide at 30 ± 0.1 °C. The introduction of ether linkages and pendant pentadecyl chains into polyamides led to an enhanced solubility in N,N-dimethylacetamide and 1-methyl-2-pyrrolidinone at room temperature or upon heating. The polyamides could be solution-cast into tough, flexible and transparent films from their N,N-dimethylacetamide solution. Wide angle X-ray diffraction patterns exhibited broad halo indicating that the polymers were essentially amorphous in nature. X-Ray diffractograms also displayed a diffuse to sharp reflection in the small-angle region (2θ = ∼2-5°) for the polyamides characteristics of formation of loosely to well-developed layered structure arising from packing of flexible pentadecyl chains. The glass transition temperature observed for the polyamides was in range 139-189 °C. The temperature at 10% weight loss (T10), determined by TGA in nitrogen atmosphere, of the polyamides was in the range 425-453 °C indicating their good thermal stability.  相似文献   
8.
A new aromatic diacylhydrazide monomer viz., 4-[4′-(hydrazinocarbonyl)phenoxy]-2- pentadecylbenzohydrazide was synthesized starting from cardanol, which in turn is obtainable from cashew nut shell liquid - a renewable resource material. A series of new poly(amideimide)s containing flexibilizing ether linkages and pendant pentadecyl chains was synthesized from 4-[4′-(hydrazinocarbonyl)phenoxy]-2-pentadecylbenzohydrazide and commercially available aromatic dianhydrides, viz., benzene-1,2,4,5-tetracarboxylic dianhydride, 3,3′,4,4′-biphenyltetracarboxylic dianhydride, benzophenone-3,3′,4,4′-tetracarboxylic dianhydride, 4,4′-oxydiphthalic anhydride and 4,4′-(hexafluoro isopropylidene)diphthalic anhydride by a two-step solution polycondensation in N,N-dimethylacetamide via the poly(hydrazide acid) intermediate. Inherent viscosities of poly(amideimide)s were in the range 0.60-0.64 dL/g in N,N-dimethylacetamide at 30 ± 0.1 °C. Poly(amideimide)s could be solution cast into tough, transparent and flexible films from their N,N-dimethylacetamide solutions. The solubility of poly(amideimide)s was significantly improved by incorporation of pendant pentadecyl chains and were found to be soluble in N,N-dimethylacetamide, 1-methyl-2-pyrrolidinone, pyridine and m-cresol at room temperature or upon heating. Wide angle X-ray diffraction patterns of poly(amideimide)s revealed a broad halo at around 2θ = ∼19° suggesting that polymers were amorphous in nature. In the small-angle region, diffuse to sharp reflections of a typically layered structure resulting from the packing of pentadecyl side chains were observed. The temperature at 10% weight loss (T10), determined by TGA in nitrogen atmosphere, of poly(amideimide)s was in the range of 388-410 °C indicating their good thermal stability. Glass transition temperatures of poly(amideimide)s were in the range 162-198 °C. It was observed that the plasticization effect of attached pentadecyl side chains induced the depression of Tg.  相似文献   
9.
以天然产物腰果酚为原料,利用其酚羟基与环氧基的反应活性,通过开环醚化反应制备了两种腰果酚基不饱和树脂单体。通过傅里叶红外光谱研究了合成过程中主要活性基团的变化,结合核磁共振氢谱及凝胶渗透色谱分析进一步确定了合成树脂单体的分子结构,并利用红外光谱法对树脂单体的紫外光固化行为进行了研究,且对其光固化物进行了热重分析。研究表明:分子结构分析确认了目标产物的成功合成,树脂单体的分子结构以及不饱和双键含量对树脂的固化速度和固化物的热稳定性有着重要影响,两种单体在30 s内均已基本达到最高固化水平,光固化物的主分解初始温度均可达到350 ℃以上。  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号