首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1665篇
  免费   67篇
  国内免费   223篇
化学   1790篇
晶体学   4篇
力学   5篇
综合类   12篇
数学   2篇
物理学   142篇
  2024年   4篇
  2023年   12篇
  2022年   69篇
  2021年   70篇
  2020年   55篇
  2019年   39篇
  2018年   43篇
  2017年   65篇
  2016年   76篇
  2015年   47篇
  2014年   54篇
  2013年   129篇
  2012年   63篇
  2011年   65篇
  2010年   60篇
  2009年   88篇
  2008年   110篇
  2007年   73篇
  2006年   97篇
  2005年   92篇
  2004年   56篇
  2003年   54篇
  2002年   54篇
  2001年   53篇
  2000年   46篇
  1999年   52篇
  1998年   55篇
  1997年   47篇
  1996年   52篇
  1995年   48篇
  1994年   33篇
  1993年   14篇
  1992年   15篇
  1991年   19篇
  1990年   3篇
  1989年   6篇
  1988年   11篇
  1987年   5篇
  1986年   3篇
  1985年   4篇
  1984年   2篇
  1983年   3篇
  1982年   3篇
  1981年   3篇
  1979年   2篇
  1978年   1篇
排序方式: 共有1955条查询结果,搜索用时 0 毫秒
1.
For the modification of medically useful biomaterials from bacterially synthesized cellulose, fleeces of Acetobacter xylinum have been produced in the presence of 0.5, 1.0, and 2.0% (m/v) carboxymethylcellulose (CMC), methylcellulose (MC), and poly(vinyl alcohol) (PVA), respectively, in the Hestrin-Schramm culture medium. The incorporation of the water-soluble polymers into cellulose and their influence on the structure, crystal modifications, and material properties are described. With IR and solid-state 13C NMR spectroscopy of the fleeces, the presence of the cellulose ethers and an increase in the amorphous parts of the cellulose modifications (NMR results) have been detected. The incorporation is represented by a higher product yield, too. As demonstrated by scanning electron microscopy, a porelike cellulose network structure forms in the presence of CMC and MC. This modified structure increases the water retention ability (expressed as the water content), the ion absorption capacity, and the remaining nitrogen-containing residues from the culture medium or bacteria cells. The water content of bacterial cellulose (BC) in the never dried state and the freeze-dried, reswollen state can be controlled by the CMC concentration in the culture solution. The freeze-dried, reswollen BC-CMC (2.0%) contains 96% water after centrifugation, whereas standard BC has only 73%. About 98% water is included in a BC-MC composite in the wet state, and about 93% is included in the reswollen state synthesized in the presence of 0.5, 1.0, or 2.0% MC. These biomaterial composites can be stored in the dried state and reswollen before use, reaching a higher water absorption than pure, never dried BC. The copper ion capacity of BC-CMC composites increases proportionally with the added amount of CMC. BC-CMC (0.5%) can absorb 3 times more copper ions than original BC. In the case of 0.5 and 1.0% PVA additions to the culture solution, this polymer cannot be detected in the cellulose fleeces after they are washed. Nevertheless the presence of PVA in the culture medium effects a decreased product yield, a retention of nitrogen-containing residues in the material during purification, a reduced water absorption ability, and a slightly higher copper ion capacity in comparison with original BC. The water content of freeze-dried, reswollen BC-PVA (0.5%) is only 62%. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 463–470, 2004  相似文献   
2.
Electrospinning of cellulose acetate (CA) in a new solvent system and the deacetylation of the resulting ultrafine CA fibers were investigated. Ultrafine CA fibers (∼2.3 μm) were successfully prepared via electrospinning of CA in a mixed solvent of acetone/water at water contents of 10–15 wt %, and more ultrafine CA fibers (0.46 μm) were produced under basic pH conditions. Ultrafine cellulose fibers were regenerated from the homogeneous deacetylation of ultrafine CA fibers in KOH/ethanol. It was very rapid and completed within 20 min. The crystal structure, thermal properties, and morphology of ultrafine CA fibers were changed according to the degree of deacetylation, finally to those of pure cellulose, but the nonwoven fibrous mat structure was maintained. The activation energy for the deacetylation of ultrafine CA fibers was 10.3 kcal/mol. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 5–11, 2004  相似文献   
3.
Cellulose was dissolved in 6 wt % NaOH/4 wt % urea aqueous solution, which was proven by a 13C NMR spectrum to be a direct solvent of cellulose rather than a derivative aqueous solution system. Dilute solution behavior of cellulose in a NaOH/urea aqueous solution system was examined by laser light scattering and viscometry. The Mark–Houwink equation for cellulose in 6 wt % NaOH/4 wt % urea aqueous solution at 25 °C was [η] = 2.45 × 10?2 weight‐average molecular weight (Mw)0.815 (mL g?1) in the Mw region from 3.2 × 104 to 12.9 × 104. The persistence length (q), molar mass per unit contour length (ML), and characteristic ratio (C) of cellulose in the dilute solution were 6.0 nm, 350 nm?1, and 20.9, respectively, which agreed with the Yamakawa–Fujii theory of the wormlike chain. The results indicated that the cellulose molecules exist as semiflexible chains in the aqueous solution and were more extended than in cadoxen. This work provided a novel, simple, and nonpollution solvent system that can be used to investigate the dilute solution properties and molecular weight of cellulose. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 347–353, 2004  相似文献   
4.
The main transitions of cellulose fatty esters with different degrees of substitution (DSs) were investigated with dynamic mechanical thermal analysis. Two distinct main relaxations were observed in partially substituted cellulose esters (PSCEs). They were attributed to the glass‐transition temperature and to the chain local motion of the aliphatic substituents. The temperatures of both transitions decreased when DS or the number of carbon atoms (n) of the acyl substituent increased. Conversely, all the transitions of fully substituted cellulose esters occurred within a narrow temperature range, and they did not vary significantly with n. This phenomenon was explained by the formation of a crystalline phase of the fatty substituents. The presence of few residual OH groups in PSCEs was responsible for a large increase in the storage bending modulus, and it eliminated the effect of n on damping. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 281–288, 2003  相似文献   
5.
Simultaneous DSC-TG and DTA-TG were used to investigate the calatytic effect of the metal on the thermal decomposition of a cellulose matrix containing small copper particles. The techniques were also used to demonstrate the effect of the metal particles on the subsequent activation of the carbon matrix, a process which develops the pore structure necessary to expose the metal particles to the gas phase. Temperature programmed desorption was used to study the initial mass loss found on activation. To quantify the catalytic effect of the copper particles on the activation process an estimate was made of the activation energy of the catalysed and uncatalysed reactions. The work gives valuable information on the processes involved in the preparation of a new range of metal-carbon catalysts. In celebration of the 60th birthday of Dr. Andrew K. Galwey  相似文献   
6.
Blends of the natural polymer cellulose with a synthetic polymer, polyamide 66, are studied in order to determine if the expected strong interaction between them, due to hydrogen bonds, could improve their mechanical properties such as strength and elongation at break. In a previous work {Part I, J. Polym. Sci. Polym. Phys., 32 , 1437 (1994)}, the preparation technique and the characterization of cellulose-polyamide 66 (PA66) blends were described in detail. Several samples in the composition range between 0 to 70 wt % of PA66 were carefully dried and examined using dynamic mechanical and tensile tests. Based on previous work a new percolation model has been developed. It takes both linear and nonlinear mechanical behaviors into account and allows for the effect of adhesion between material domains. From comparison between experimental and predicted data, it is concluded that a partial miscibility between the amorphous phases of cellulose and PA66 exists and is responsible for a strong adhesion at their interface. Solid-state 13C nuclear magnetic resonance has also been used to study these samples and supports the existence of strong interactions between both homopolymers. © 1995 John Wiley & Sons, Inc.  相似文献   
7.
Fibers were spun from isotropic and anisotropic dimethylacetamide solutions of cellulose esters. Take-up speeds of the dry jet/wet spinning process varied. Water served as the coagulant. The mechanical properties of the fibers increased as spinning progressed from the isotropic to the anisotropic state of the solution. A trade-off in solubility and fiber properties was noted as the butyryl acetyl ratio decreased. Whereas high butyryl content enhances both overall solubility and the formation of liquid–crystalline solutions at lower concentration, it results in lower fiber modulus and strength. Morphology of the fibers depended on the coagulation rate which was influenced by the concentration of the sppinning solution. The level of orientation and crystallinity of the fibers increased somewhat when they were spun from liquid-crystalline solutions. © 1993 John Wiley & Sons, Inc.  相似文献   
8.
Pyrolysis ammonia chemical ionization (PyCI) mass spectrometry was performed on hy-droxyethyl-, hydroxypropyl-,methyl-, hydroxypropylmethyl-, and ethylhydroxyethyl cel-luloses. The mass peaks in the PyCI mass spectra of these cellulose ethers could be assigned to the ions of pyrolytic dissociation products which form via the [2 + 2 + 2] cycloreversion and the Ei elimination pyrolysis pathway. Structural information about the residual amount of nonderivatized cellulose, the relative chain length distributions of the substituents in hydroxyalkyl celluloses, and the end-capping of hydroxyalkyl substituents by alkyl groups in the mixed cellulose ethers is obtained. Interference of secondary pyrolysis products in the PyCI mass spectra is found to be of minor importance, especially in the lower mass regions. © 1995 John Wiley & Sons, Inc.  相似文献   
9.
Different ink‐jet printed paper materials were investigated using X‐ray photoelectron spectroscopy (XPS) yielding the elemental composition of the near‐surface region of the papers. We found significant differences with respect to the detected elements and their atomic concentrations in the different inks studied here. Two different groups of inks could be identified by means of a lower ratio of the O and C atomic concentrations and lower concentrations in specific trace elements like Mg, Na and Si. High‐resolution spectra of C 1s and O 1s core levels allowed a detailed determination of the chemical state of the respective elements. On the basis of a detailed deconvolution of these XPS signals, significant differences between all the investigated ink‐jet printed papers were found, thereby allowing their discrimination. The applicability of the measurements and, more generally, the XPS technique for forensic investigations of paper are discussed. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
10.
本文制备了氨基羧酸纤维滤纸片作为柱填充物,成功地分离和富集了地化样品中的多种稀土元素。富集后的稀土元素采用电感耦合等离子体原子发射光谱法测定,回收率为90%~109%。本文还对基体干扰及其消除进行了研究。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号