首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6114篇
  免费   916篇
  国内免费   842篇
化学   5622篇
晶体学   148篇
力学   117篇
综合类   18篇
数学   34篇
物理学   1933篇
  2024年   8篇
  2023年   114篇
  2022年   152篇
  2021年   161篇
  2020年   276篇
  2019年   234篇
  2018年   198篇
  2017年   242篇
  2016年   337篇
  2015年   324篇
  2014年   380篇
  2013年   583篇
  2012年   477篇
  2011年   572篇
  2010年   459篇
  2009年   549篇
  2008年   492篇
  2007年   479篇
  2006年   424篇
  2005年   302篇
  2004年   272篇
  2003年   250篇
  2002年   115篇
  2001年   129篇
  2000年   59篇
  1999年   54篇
  1998年   53篇
  1997年   35篇
  1996年   18篇
  1995年   28篇
  1994年   13篇
  1993年   16篇
  1992年   7篇
  1991年   12篇
  1990年   14篇
  1989年   4篇
  1988年   4篇
  1987年   2篇
  1986年   2篇
  1985年   5篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   3篇
  1979年   4篇
  1975年   1篇
  1974年   1篇
  1970年   1篇
  1968年   1篇
排序方式: 共有7872条查询结果,搜索用时 375 毫秒
1.
The designs of efficient and inexpensive Pt-based catalysts for methanol oxidation reaction (MOR) are essential to boost the commercialization of direct methanol fuel cells. Here, the highly catalytic performance PtFe alloys supported on multiwalled carbon nanotubes (MWCNTs) decorating nitrogen-doped carbon (NC) have been successfully prepared via co-engineering of the surface composition and electronic structure. The Pt1Fe3@NC/MWCNTs catalyst with moderate Fe3+ feeding content (0.86 mA/mgPt) exhibits 2.26-fold enhancement in MOR mass activity compared to pristine Pt/C catalyst (0.38 mA/mgPt). Furthermore, the CO oxidation initial potential of Pt1Fe3@NC/MWCNTs catalyst is lower relative to Pt/C catalyst (0.71 V and 0.80 V). Benefited from the optimal surface compositions, the anti-corrosion ability of MWCNT, strong electron interaction between PtFe alloys and MWCNTs and the N-doped carbon (NC) layer, the Pt1Fe3@NC/MWCNTs catalyst presents an improved MOR performance and anti-CO poisoning ability. This study would open up new perspective for designing efficient electrocatalysts for the DMFCs field.  相似文献   
2.
A single bubble absorption column was used to examine the effect of hydrodynamic on carbon dioxide (CO2) and hydrogen sulfide (H2S) absorption in pure water and water-based nanofluids dispersed with neat, and OH and NH2 functionalized multiwall carbon nanotubes (MWCNTs). Sodium dodecyl sulfate (SDS) was used as a surfactant and stabilizer. The maximum absorption of CO2 and H2S were found to be 0.0038 mmol/m2·s and 0.056 mmol/m2·s using NH2-MWCNTs /nanofluid with 0.5 wt% content, respectively. The diffusion coefficients of gases into the nanofluids were computed by using an equation attained based on Dankwert’s theory. A last, an empirical correlation was proposed to determine the Sherwood number for the absorption of the aforementioned gases into the nanofluids.  相似文献   
3.
Herein, we propose the construction of a sandwich-structured host filled with continuous 2D catalysis–conduction interfaces. This MoN-C-MoN trilayer architecture causes the strong conformal adsorption of S/Li2Sx and its high-efficiency conversion on the two-sided nitride polar surfaces, which are supplied with high-flux electron transfer from the buried carbon interlayer. The 3D self-assembly of these 2D sandwich structures further reinforces the interconnection of conductive and catalytic networks. The maximized exposure of adsorptive/catalytic planes endows the MoN-C@S electrode with excellent cycling stability and high rate performance even under high S loading and low host surface area. The high conductivity of this trilayer texture does not compromise the capacity retention after the S content is increased. Such a job-synergistic mode between catalytic and conductive functions guarantees the homogeneous deposition of S/Li2Sx, and avoids thick and devitalized accumulation (electrode passivation) even after high-rate and long-term cycling.  相似文献   
4.
As a new type of quantum dots (QDs), hexagonal boron nitride quantum dots (BNQDs) exhibit promising potential in the applications of disease diagnosis, fluorescence imaging, biosensing, metal ion detection, and so on, because of their remarkable chemical stability, excellent biocompatibility, low cytotoxicity, and outstanding photoluminescence properties. However, the large-scale fabrication of homogeneous BNQDs still remains challenging. In this article, the properties and common fabrication methods of BNQDs are summarized based on the recent research progress. Then, the corresponding yields, morphologies, and fabrication mechanisms of these as-obtained BNQDs are discussed in detail. Moreover, the applications of these as-obtained BNQDs in different fields are also discussed. This article is expected to inspire new methods and improvements to achieve large-scale fabrication of homogeneous BNQDs, which will enable their practical applications in future.  相似文献   
5.
The design and exploration of efficient, stable and environmentally compatible organic emitters for an electrochemiluminescence (ECL) sensor is a promising topic. Herein, a novel environmentally-friendly luminophore, ZnBCBTP@MWCNTs, were fabricated via self-assembly of porphyrin molecules (ZnBCBTP) onto multi-walled carbon nanotubes (MWCNTs). The resulting luminophore ZnBCBTP@MWCNTs displayed not only the highly ECL property and but also the good accelerated electron mobility. Then, a label-free ECL biosensor based ZnBCBTP@MWCNTs was constructed for the ultrasensitive detection of uric acid. Excitingly, this proposed ECL biosensor performed a good linear relationship in the range of 0–300 μM with a low detection limit of 1.4 μM, thus offering another reliable and feasible sensing platform for clinical bioanalysis with good selectivity, stability, and repeatability.  相似文献   
6.
Doxorubicin (DOX), a recognized anticancer drug, forms stable associations with carbon nanotubes (CNTs). CNTs when properly functionalized have the ability to anchor directly in cancerous tumors where the release of the drug occurs thanks to the tumor slightly acidic pH. Herein, we study the armchair and zigzag CNTs with Stone–Wales (SW) defects to rank their ability to encapsulate DOX by determining the DOX-CNT binding free energies using the MM/PBSA and MM/GBSA methods implemented in AMBER16. We investigate also the chiral CNTs with haeckelite defects. Each haeckelite defect consists of a pair of square and octagonal rings. The armchair and zigzag CNT with SW defects and chiral nanotubes with haeckelite defects predict DOX-CNT interactions that depend on the length of the nanotube, the number of present defects and nitrogen doping. Chiral nanotubes having two haeckelite defects reveal a clear dependence on the nitrogen content with DOX-CNT interaction forces decreasing in the order 0N > 4N > 8N. These results contribute to a further understanding of drug-nanotube interactions and to the design of new drug delivery systems based on CNTs.  相似文献   
7.
Cycloparaphenylene ([r]CPP) and cyclacene ([r]CA) series are models for short carbon nanotubes. It is shown that armchair edges in model cycloparaphenylenes possess greater aromaticity and cyclic conjugation than do zigzag edges in model cyclacenes. According to Aihara’s bond resonance energy (BRE) and Bosanac and Gutman energy effect (ef) measurements, cycloparaphenylenes are twice as aromatic as cyclacenes. The general solution of all eigenvalues of all members of the cycloparaphenylene series is given. The origin of the recurrence of some eigenvalues are determined.  相似文献   
8.
Iron catalysts have been used widely for the mass production of carbon nanotubes (CNTs) with high yield. In this study, UV/visible spectroscopy was used to determine the Fe catalyst content in CNTs using a colorimetric technique. Fe ions in solution form red–orange complexes with 1,10-phenanthroline, producing an absorption peak at λ=510 nm, the intensity of which is proportional to the solution Fe concentration. A series of standard Fe solutions were formulated to establish the relationship between optical absorbance and Fe concentration. Many Fe catalysts were microscopically observed to be encased by graphitic layers, thus preventing their extraction. Fe catalyst dissolution from CNTs was investigated with various single and mixed acids, and Fe concentration was found to be highest with CNTs being held at reflux in HClO4/HNO3 and H2SO4/HNO3 mixtures. This novel colorimetric method to measure Fe concentrations by UV/Vis spectroscopy was validated by inductively coupled plasma optical emission spectroscopy, indicating its reliability and applicability to asses Fe content in CNTs.  相似文献   
9.
We report results of the atomic and electronic structures of Al7C cluster using ab initio molecular dynamics with ultrasoft pseudopotentials and generalized gradient approximation. The lowest energy structure is found to be the one in which carbon atom occupies an interstitial position in Al7 cluster. The electronic structure shows that the recent observation [Chem. Phys. Lett. 316, 31 (2000)] of magic behavior of Al7C- cluster is due to a large highest occupied and lowest unoccupied molecular orbital (HOMO-LUMO) gap which makes Al7C- chemically inert. These results have further led us to the finding of a new neutral magic cluster Al7N which has the same number of valence electrons as in Al7C- and a large HOMO-LUMO gap of 1.99 eV. Further, calculations have been carried out on (Al7N)2 to study interaction between magic clusters. Received 28 July 2001  相似文献   
10.
Multi-quantum well heterostructures (MQWHs) of the novel Ga(NAsP)/GaP material system have been grown, pseudomorphically strained to GaP-substrate. The crystalline perfection is verified by transmission electron microscopy (TEM). For As-concentrations in excess of about 70%, a direct band structure and adequate luminescence efficiency for laser device application is observed. Temperature-dependent photoluminescence (PL) investigations show the influence of carrier localisation and non-radiative recombination processes typical for dilute nitride materials. With rising N content in the active material, the emission wavelength shifts towards longer wavelength, leading to Ga(NAs)/GaP MQW structures with photon energies below the indirect band gap of silicon (Si). At the same time the luminescence intensity drops due to an increase in non-radiative carrier traps and/or structural degradation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号