首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   2篇
  国内免费   3篇
化学   50篇
  2023年   4篇
  2019年   4篇
  2017年   1篇
  2016年   1篇
  2011年   1篇
  2010年   2篇
  2009年   2篇
  2008年   3篇
  2007年   3篇
  2006年   2篇
  2005年   4篇
  2004年   2篇
  2003年   4篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   5篇
  1998年   1篇
  1995年   2篇
  1993年   1篇
  1989年   2篇
  1988年   1篇
  1978年   1篇
  1967年   1篇
排序方式: 共有50条查询结果,搜索用时 15 毫秒
1.
The compounds with a single and double -CH2C6H4CH2- spacer, [CpFeC3B8H10-NH-CH2C6H4CH2-NH-C3B8H10FeCp] and [CpFeC3B8H10-N-(CH2C6H4CH2)2-N-C3B8H10FeCp], represent the first example of designed shaping by extremely stable cyclopentadienyl-ferratricarbollide (CpFeTCB) cages into rigid molecular constructions approaching linear arrangement.  相似文献   
2.
The first example of an organic reduction with boranes catalyzed by a high valent oxo-complex is reported. The systems catecholborane/MoO2Cl2(H2O)2 (5 mol %) and BH3·THF/MoO2Cl2 (5 mol %) proved to be very efficient for the reduction of sulfoxides to the corresponding sulfides in excellent yields.  相似文献   
3.
利用EHMO方法,对n=5~12的完整多面体硼烷骨架、缺一个和两个顶点以及戴一个和两个帽原子的各种异构体进行了量子化学计算。直接对硼烷的价成键轨道数公式BMO=4n-[f+3(s+1)]进行了验证。在对计算结果讨论的基础上,进一步探讨了骨架几何结构与成键轨道数之间的关系。  相似文献   
4.
Hellmann-Feynman静电力表现了分子中电荷分布及对各原子核的作用。H-F力的方向性可描述电子电荷的数量和位置,具有定量、形象和直观的特点,已在弯键的研究中显示出来。这一方法尚可用于多中心缺电子桥键的研究。 1 理论与方法 按LCAO-MO理论对H-F力进行分解,除有重叠力、极化力和屏蔽力外,还有一  相似文献   
5.
N‐Silylaminotitanium trichlorides, Me3S(R)N‐TiCl3 ( 18 ) [R = tBu ( a ), SiMe3 ( b ), 9‐borabicyclo[3.3.1]nonyl (9‐BBN)( c )], and (CH2SiMe2)2N‐TiCl3 ( 18d ) were obtained in high yield and high purity from the reaction of the respective bis(silylamino)plumbylene with an excess of titanium tetrachloride. The crystal structure of 18a was determined by X‐ray analysis. The reactions of the analogous stannylenes with an excess of TiCl4 did not lead to 18 . N‐Lithio‐trimethylsilyl[9‐(9‐borabicyclo[3.3.1]nonyl)]amine ( 8 ) was prepared, structurally characterized and used for the synthesis of a new bis(amino)stannylene 10 and a plumbylene 11 . The compounds 18a—d served as ideal starting materials for the synthesis of bis(silylamino)titanium dichlorides, where the silylamino groups can be identical ( 19 ) or different ( 20 ). This was achieved either by the reaction of 18 again with bis(amino)plumbylenes or with lithium N‐silylamides. In contrast to the direct synthesis starting from titanium tetrachloride and two equivalents of the respective lithium amide, which in general affords 19 with identical amino groups only in low yield, the procedure starting from 18 is much more versatile and gave the pure compounds 19 or 20 in almost quantitative yield. Further treatment of the dichlorides 19 or 20 with lithium amides led to tris(amino)titanium chlorides 21 . The dichlorides 19 or 20 reacted with two equivalents of alkynyllithium reagents to give the first well characterized examples of di(alkyn‐1‐yl)bis(N‐silylamino)titanium compounds 22 — 27 . These compounds reacted with trialkylboranes (triethyl or tripropylborane) by 1, 1‐organoboration. In some cases, the extremely reactive reaction products could be identified as novel 1, 1‐bis(silylamino)titana‐2, 4‐cyclopentadienes 28 — 31 bearing a dialkylboryl group in 3‐position. In solution, the proposed structures of all products were deduced from a consistent set of data derived from multinuclear magnetic resonance spectroscopy (1H, 11B, 13C, 14N, 15N, 29Si, 35Cl NMR).  相似文献   
6.
Preparation and characterization of the first derivatives of the fused macropolyhedral anion [B22H22]2− are reported. The species [B22H21OH]2− (1) and [B22H21OEt]2− (2) are obtained from workup of the products of the reaction between HgBr2 and [NBzlEt3]2[B22H22]; a cluster involving the conjoining of a closo-B12 icosahedron with a nido-B10 cluster. Washing the products with ethanol followed by thin-layer chromatography allows the isolation of 1 and 2, reproducibly, in yields of 27 and 20%, respectively. The species were characterized by NMR spectroscopy, elemental analysis and X-ray diffraction studies. The crystal structure determinations of the two species identify novel features. Apparently the influence of the O atoms in the ions [B22H21OH]2− and [B22H21OEt]2− results in the lengthening of what was a gunwale B---B connection adjacent to the junction of the two cages such that the distances are 2.180 and 2.230 Å, respectively. These latter are longer than the corresponding distance in the parent species [B22H22]2−, which is 2.09 Å; quite long for a normal B---B distance. Thus it is assumed that these B atoms, in 1 and 2, one of which bears the substituent, are not bonded to each other.  相似文献   
7.
This work reports the catalytic activity of the oxo-complexes HReO4, MoO2(acac)2, WO2Cl2, and VO(acac)2 in the reduction of sulfoxides with PhSiH3 or HBcat. The results obtained showed that the catalyst systems PhSiH3/HReO4 (5 mol %) and HBcat/HReO4 (5 mol %) are highly efficient for the deoxygenation of sulfoxides. The complex MoO2(acac)2 was also efficient, but the reactions required more time and heating. Finally, the complexes WO2Cl2 and VO(acac)2 showed a moderate activity.  相似文献   
8.
The syntheses of lithium and alkaline earth metal complexes with the bis(borane‐diphenylphosphanyl)amido ligand ( 1 ‐ H ) of molecular formulas [{κ2‐N(PPh2(BH3))2}Li(THF)2] ( 2 ) and [{κ3‐N(PPh2(BH3))2}2M(THF)2] [(M = Ca ( 3 ), Sr ( 4 ), Ba ( 5 )] are reported. The lithium complex 2 was obtained by treatment of bis(borane‐diphenylphosphanyl)amine ( 1 ‐ H ) with lithium bis(trimethylsilyl)amide in a 1:1 molar ratio via the silylamine elimination method. The corresponding homoleptic alkaline earth metal complexes 3 – 5 were prepared by two synthetic routes – first, the treatment of metal bis(trimethylsilyl)amide and protio ligand 1 ‐ H via the elimination of silylamine, and second, through salt metathesis reaction involving respective metal diiodides and lithium salt 2 . The molecular structures of lithium complex 2 and barium complex 5 were established by single‐crystal X‐ray diffraction analysis. In the solid‐state structure of 2 , the lithium ion is ligated by amido nitrogen atoms and hydrogen atoms of the BH3 group in κ2‐coordination of the ligand 1 resulting in a distorted tetrahedral geometry around the lithium ion. However, in complex 5 , κ3‐coordination of the ligand 1 was observed, and the barium ion adopted a distorted octahedral arrangement. The metal complex 5 was tested as catalyst for the ring opening polymerization of ?‐caprolactone. High activity for the barium complex 5 towards ring opening polymerization (ROP) of ?‐caprolactone with a narrow polydispersity index was observed. Additionally, first‐principle calculations to investigate the structure and coordination properties of alkaline earth metal complexes 3 – 5 as a comparative study between the experimental and theoretical findings were described.  相似文献   
9.
The synthesis of a new, paramagnetic closo-[(8-(-CH2CH2O)2-1,2-C2B9H10)(1′,2′-C2B9H11)-3,3′-Fe]0 (3) is reported. This compound can serve as a versatile building block for construction of both anionic and zwitterionic derivatives, as exemplified by the synthesis of a series of compounds of general formula closo-[(8-X-(CH2CH2O)2-1,2-C2B9H10)(1′,2′-C2B9H11)-3,3′-Fe], bearing organic end groups (X = NC5H5 (4), (C6H5)3P (5), OH (6), and 2-O(1-CH3O-C6H4) (7)) attached to the cluster by a diethyleneglycol spacer. Molecular structures of 3, 4, 5 and 7 were determined by single-crystal X-ray diffraction analysis and by the long-time neglected method of paramagnetic, high field NMR (1H, 13C and 11B) spectroscopy.  相似文献   
10.
Highly efficient hydrogenolysis and deuterogenolysis of diboron compounds have been realized by the use of a cobalt catalyst, affording TON up to 48201. Furthermore, a one-pot two-step procedure comprising sequential deuterogenolysis of diboron and deuteroboration of alkynes under the same cobalt catalyst has been developed for the efficient, atom-economical synthesis of deuterated vinylboronates with high deuterium incorporation and excellent regio- and stereoselectivity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号