首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
化学   7篇
  2023年   1篇
  2012年   1篇
  2007年   1篇
  2003年   1篇
  1996年   1篇
  1991年   1篇
  1990年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
《Electroanalysis》2003,15(11):913-947
Impedance spectroscopy is a rapidly developing electrochemical technique for the characterization of biomaterial‐functionalized electrodes and biocatalytic transformations at electrode surfaces, and specifically for the transduction of biosensing events at electrodes or field‐effect transistor devices. The immobilization of biomaterials, e.g., enzymes, antigens/antibodies or DNA on electrodes or semiconductor surfaces alters the capacitance and interfacial electron transfer resistance of the conductive or semiconductive electrodes. Impedance spectroscopy allows analysis of interfacial changes originating from biorecognition events at electrode surfaces. Kinetics and mechanisms of electron transfer processes corresponding to biocatalytic reactions occurring at modified electrodes can be also derived from Faradaic impedance spectroscopy. Different immunosensors that use impedance measurements for the transduction of antigen‐antibody complex formation on electronic transducers were developed. Similarly, DNA biosensors using impedance measurements as readout signals were developed. Amplified detection of the analyte DNA using Faradaic impedance spectroscopy was accomplished by the coupling of functionalized liposomes or by the association of biocatalytic conjugates to the sensing interface providing biocatalyzed precipitation of an insoluble product on the electrodes. The amplified detections of viral DNA and single‐base mismatches in DNA were accomplished by similar methods. The changes of interfacial features of gate surfaces of field‐effect transistors (FET) upon the formation of antigen‐antibody complexes or assembly of protein arrays were probed by impedance measurements and specifically by transconductance measurements. Impedance spectroscopy was also applied to characterize enzyme‐based biosensors. The reconstitution of apo‐enzymes on cofactor‐functionalized electrodes and the formation of cofactor‐enzyme affinity complexes on electrodes were probed by Faradaic impedance spectroscopy. Also biocatalyzed reactions occurring on electrode surfaces were analyzed by impedance spectroscopy. The theoretical background of the different methods and their practical applications in analytical procedures were outlined in this article.  相似文献   
2.
Thiophenes functionalised in the 3-position are ubiquitous building blocks for the design and synthesis of organic semiconductors. Their non-centrosymmetric nature has long been used as a powerful synthetic design tool exemplified by the vastly different properties of regiorandom and regioregular poly(3-hexylthiophene) owing to the repulsive head-to-head interactions between neighbouring side chains in the regiorandom polymer. The renewed interest in highly electron-rich 3-alkoxythiophene based polymers for bioelectronic applications opens up new considerations around the regiochemistry of these systems as both the head-to-tail and head-to-head couplings adopt near-planar conformations due to attractive intramolecular S−O interactions. To understand how this increased flexibility in the molecular design can be used advantageously, we explore in detail the geometrical and electronic effects that influence the optical, electrochemical, structural, and electrical properties of a series of six polythiophene derivatives with varying regiochemistry and comonomer composition. We show how the interplay between conformational disorder, backbone coplanarity and polaron distribution affects the mixed ionic-electronic conduction. Ultimately, we use these findings to identify a new conformationally restricted polythiophene derivative for p-type accumulation-mode organic electrochemical transistor applications with performance on par with state-of-the-art mixed conductors evidenced by a μC* product of 267 F V−1 cm−1 s−1.  相似文献   
3.
生物电子学—现代分析化学新发展的重要领域   总被引:1,自引:0,他引:1  
生物电子学技术是基于电子学与生物技术的发展而诞生的新领域。本文阐述并展望在这领域的最新发展。包括:生物计算机与分子计算机,生物传感器,酶电极的生物催化作用,基于离子电极和生物离子学的生物传感器,导电聚合物传感器等。  相似文献   
4.
Vision and other light-triggered biochemical transformations in plants and living organisms represent a sophisticated biological processes in which optical signals are recorded and transduced as (physico)chemical events. Photoswitchable biomaterials are a new class of substances in which optical signals generate discrete “On” and “Off” states of biological functions, resembling logic gates that flip between 0 and 1 states in response to the changes in electric currents in computers. The (photo)chemistry of photochromic materials has been extensively developed in the past four decades. These materials isomerize reversibly upon light absorption, and the discrete photoisomeric states exhibit distinct spectral and chemical features. Integration of photoisomerizable (or photochromic) units into biomaterials allow their secondary functions such as biocatalysis, binding, and electron transfer to be tailored so that they can be switched on or off. This can be accomplished by chemical modification of the biomaterial by photoisomerizable units and by integration of biomaterials in photoisomerizable microenvironments such as monolayers or polymers. The photoswitchable properties of chemically modified biomaterials originate from the light-induced generation or perturbation of the biologically active site, whereas in photoisomerizable matrices they depend upon the regulation of the physical or chemical features of the photoisomerizable assemblies of polymers, monolayers, or membranes. Light-triggered activation of catalytic biomaterials provides a means of amplifying the recorded optical signal by biochemical transformations, and photostimulated biochemical redox switches allow its electrochemical transduction and amplification. The field of photoswitches based on biomaterials has developed extensively in the past few years within the general context of molecular switching devices and micromachinery. The extensive knowledge on the manipulation of biomaterials through genetic engineering and the fabrication of surfaces modified by biologically active materials enables us to prepare biomaterials with improved optical-switching features. Their application in optoelectronic or bioelectronic devices has been transformed from fantasy to reality. The use of photoswitchable biomaterials in information storage and processing devices (biocomputers), sensors, reversible immunosensors, and biological amplifiers of optical signals has already been demonstrated, but still leaves important future challenges.  相似文献   
5.
Electrochemical detection of DNA is a highly important topic. Here we show that the electrochemical responses of one DNA base (guanine, adenine, cytosine or thymine), in terms of oxidation potential, current intensity, peak width and resolution can be highly influenced by the presence of other DNA bases at electrochemically reduced graphene oxide (ER‐GO) as well as standard glassy carbon electrode. We have observed that the effects were more significant for adenine base on ER‐GO and cytosine base on glassy carbon (GC) electrode. Differences in responses were generally low in a mixture of four different DNA bases but interestingly, deviations become significantly larger when only one or two other bases were present. Our findings are of paramount importance for future developments in DNA detection and analysis since individual DNA bases are not present in isolation in nature or in typical biosensing systems.  相似文献   
6.
本文对超薄人造双分子层膜(BLM)和叶绿体及线粒体生物膜中的电子过程进行了研究,总结了由伏安技术所得的近期实验。还讨论了基础电化学在膜研究中的应用,尤其对Eyring方程、Butler-Volmer方程和Tafel方程,以及按照膜孔电积作用在膜中的电子过程的起源进行了论述。讨论了在缺少双层脂的情况下确定氧化还原蛋白组分的标准电位(U′_0,对双层脂膜中有关的电子转移和生物氧化还原提出了设想。  相似文献   
7.
A novel single‐walled carbon nanotube (SWNT) based biosensor for real‐time detection of organophosphate has been developed. Horizontally aligned SWNTs are assembled to desirable electrodes using AC dielectrophoresis technique. Organophosphorus hydrolase (OPH) immobilized on the SWNTs by nonspecific binding triggers enzymatic hydrolysis of organophosphates (OPs), such as paraoxon, consequently causing a detectable change in the conductance of the SWNTs. The conductance change is found to be correlated to the concentration of organophosphate. Our results suggest the novel biosensor has great potential to serve as a simple and reusable platform of sensing organophosphate on a real‐time basis.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号