首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
化学   1篇
  2022年   1篇
排序方式: 共有1条查询结果,搜索用时 15 毫秒
1
1.
A variety of coating techniques are available for medical devices to be tailored with surface properties aimed at optimizing their performance in biological environments. Cold spray, as a member of the thermal spray family, is now being exploited to efficiently deposit micro- to nanometer sized metallic or non-metallic particles on surgical implants, medical devices and surfaces in the healthcare environment to create functional coatings. Cold spray has attracted attention in the context of biomedical applications due to the fact that multiple materials can be combined easily at the surface of these devices, and that oxygen-sensitive and heat-sensitive organic molecules, including bioactive compounds, can be incorporated in these coatings due to the relatively low temperatures used in the process. The ability to maintain material and chemical properties and the ability to create functional coatings make the cold spray process particularly suitable for applications in the MedTech industry sector.This review explores the fabrication of cold spray coatings including the types of materials that have been used for biomedical purposes, provides a detailed analysis of the factors affecting cold spray coating performance, and gives an overview over the most recent developments related to the technology. Cold spray coatings that have been used until this point in time in biomedical applications can be broadly classified as biocompatible coatings, anti-infective coatings, anti-corrosive coatings, and wear-resistant coatings. In addition, this review discusses how these applications can be broadened, for example by providing antiviral effect against coronavirus (COVID-19). While we highlight examples for multifunctional cold spray coatings, we also explore the current challenges and opportunities for cold spray coatings in the biomedical field and predict likely future developments.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号