首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
  国内免费   1篇
化学   12篇
物理学   4篇
  2021年   4篇
  2018年   1篇
  2016年   3篇
  2015年   2篇
  2014年   2篇
  2012年   1篇
  2010年   1篇
  2009年   2篇
排序方式: 共有16条查询结果,搜索用时 171 毫秒
1.
This paper reports ultrasound-assisted optical imaging of chemiluminescent probes in biological tissue. A focused low power ultrasound sonochemically enhances a peroxyoxalate chemiluminescence (CL) that involves indocyanine green (ICG) as luminescent pigments. By scanning the focus, it produces tomographic images of CL in scattering media. The authors demonstrate imaging using a slab of porcine muscle measuring 50 × 50 × 75 mm, in which a capsuled CL reagent is embedded at 25 mm depth. Spatial resolution of imaging and concentration characteristics of CL reagents to enhanced CL intensity are also studied to evaluate the potential for use in bio-imaging applications with exploring the CL enhancement mechanisms. CL enhancement ratio, defined as the ratio of ultrasonically enhanced CL intensity to the base intensity without ultrasound irradiation, was found to be constant even in varying ICG and oxidizer concentrations, implying to be applicable for quantitative determination of these molecules.  相似文献   
2.
《印度化学会志》2021,98(2):100029
Alkaline phosphatase (ALP) is an important biomarker in clinical diagnostics, and the abnormal level of ALP enzyme in serum is closely related to various diseases such as bone metastases, bone or liver cancer, and extrahepatic biliary obstruction. Recognizing the location and expression level of ALP in live cells has a substantial importance in early-stage cancer diagnosis, as well as an important parameter for studying the recovery of the patients after liver transplantation. With the advent of the newer and advanced fluorescence imaging techniques, small-molecule fluorescent probes have become a very powerful tool for mapping the subtle changes in the enzyme expression level in living cells and tissues in real-time. In this account, we provide an overview of recent advances in small-molecule ALP fluorescent probes, mainly during the last few years, including the design strategies and applications for biological applications.  相似文献   
3.
A novel fluorescent probe was developed for formaldehyde, which can be synthesized by one-step Buchwald–Hartwig reaction. When hydrazino-group of probe reacted with formaldehyde, hydrophobic reaction product aggregates into nanoparticles and results in the blue fluorescence due to the monomer-excimer effect. With enough sensitivity, high selectivity, good stability in physiological pH range and excellent biocompatibility, this probe can image formaldehyde in living cells.  相似文献   
4.
《Analytical letters》2012,45(17):2751-2761
Quinoline-appended rhodamine B thiohydrazide based fluorescent probe was designed and applied in fluorescent detections of mercury ions in both aqueous solution and living cells. The signal change of the probe is based on a specific metal ion induced reversible ring-opening mechanism of a rhodamine B thiohydrazide. The probe exhibits a dynamic response concentration range for Hg2+ from 1.0 × 10?8 to 1.0 × 10?5 M with a detection limit of 8.5 × 10?9 M. The fluorescent probe is pH independent in medium condition and exhibits high selectivity over other common metal ions.  相似文献   
5.
The present study deals with the photophysical property of a pyrene-benzthiazolium conjugate R1, as a strong intramolecular charge transfer (ICT) probe exhibiting long wavelength emission in the red region. Unlike traditional planar polyaromatic hydrocarbons whose aggregation generally quenches the light emission, the pyrene based R1 was found to display aggregation-induced emission (AIE) property along with simultaneous increase in its quantum yield upon increasing the water content of the medium. The R1 exhibits high specificity towards HSO3/SO32− by interrupting its own ICT producing there upon a large ratiometric blue shift of ∼220 nm in its emission spectrum. The lowest detection limit for the above measurement was found to be 8.90 × 10−8 M. The fluorescent detection of HSO3 was also demonstrated excellently by test paper strip and silica coated TLC plate incorporating R1. The live cell imaging of HSO3 through R1 in HeLa cells was studied using fluorescence microscopic studies. The particle size and morphological features of R1 and R1-HSO3 aggregates in aqueous solution were characterized by DLS along with SEM analysis.  相似文献   
6.
制备了一个衍生于咔唑的双氰基二苯代乙烯型双光子荧光脂筏探针——(E)-2-甲基-5-{2-[9-正辛基(3-咔唑基)]乙烯基}对苯二甲腈(DLR), 并对其结构进行了表征. 结果表明, DLR属于推-拉电子结构(供体-桥-受体, D-π-A), 其最大发射波长随介质极性递增, 而其荧光强度却随极性递减. DLR在二棕榈酰磷脂酰胆碱 (DPPC)中的发射强度是在二油酰磷脂酰胆碱(DOPC)中的20倍, 其对DPPC, 模拟脂筏[n(DOPC)∶n(鞘磷脂)∶n(胆固醇)=1∶1∶1]和DOPC的荧光强度比为20∶12.8∶1, 在DPPC中的荧光寿命是在DOPC中的2.2倍以上, 表明DLR能很好地区分DPPC与DOPC. DLR在DPPC和DOPC中的双光子发射截面(Φδ)分别为1350和67 GM, 表明DLR能够很好地识别脂筏, 成像脂筏在细胞与组织中的分布动态.  相似文献   
7.
Fluorescent ZnO nanoparticles have been prepared by mixing aqueous solutions of zinc nitrate and ammonium carbonate in the presence of a non-ionic surfactant, Tween-80. Increased concentrations of the surfactant were found to affect both the morphology and purity of the synthesized ZnO nanoparticles. XRD, SEM, FTIR, TGA and Confocal laser scanning microscopy were employed to characterize the as-prepared samples. ZnO nanoparticles ranging in particle size from 11 to 15 nm were formed at the reaction temperature of 70-80 °C. The results of FTIR and TGA analysis indicate the self assembly of Tween molecules on the surface of ZnO nanoparticles. A bright emission in the visible region from the as-prepared ZnO nanoparticles was recorded using confocal laser scanning microscopy. This property of the as-prepared nanoparticles may find potential application in bio-imaging.  相似文献   
8.
A series of meso-C6F5 BODIYs have been successfully synthesized and characterized. Some of them displayed excellent spectroscopic properties, such as relatively large Stokes shift, high fluorescence quantum yield, far-red or near infrared region (NIR) emission, and good photostability. In particular, the dye functionalized with oligo(ethylene glycol) ether-phenyl groups at the 3,5-position of BODIPY core became water-soluble and its emission located in the NIR region with large Stokes shift. Time-dependent density functional theory calculations were conducted to understand the structure–optical properties relationship. Furthermore, cell staining tests demonstrated that the meso-C6F5 BODPY derivative with oligo(ethylene glycol) ether-phenyl group was membrane permeable and selectively stained cytosol in living cells.  相似文献   
9.
Interferometry has been widely used for optical metrology and imaging applications because of their precision, reliability, and versatility. Although single-wavelength interferometery can provide high sensitivity and resolution, it has several drawbacks, namely, it fails to quantify large-discontinuities, large-deformations, and shape of unpolished surfaces. Multiple-wavelength techniques have been successfully used to overcome the drawbacks associated with single wavelength analysis. The use of colour CCD camera allows simultaneous acquisition of multiple interferograms. The advances in colour CCD cameras and image processing techniques have made the multi-colour interferometry a faster, simpler, and cost-effective tool for industrial applications. This article reviews the recent advances in multi-colour interferometric techniques and their demanding applications for characterization of micro-systems, non-destructive testing, and bio-imaging applications.  相似文献   
10.
The formation of nanoparticles in hydrolytic and non-hydrolytic reactions in organic media is treated as a borderline case of coordination chemistry equilibria. Metal cation complexes with O-donor ligands, such as metal alkoxides or β-diketonates and carboxylates, experience normally no kinetic hinders in re-structuring and aggregation. The steps of hydrolysis and condensation constitute in this case parts of one and the same kinetic phenomenon. Introduction of oxo-ligands during the first steps of hydrolytic or thermal decomposition leads thus in homogeneous processes to well-defined oligonuclear oxo-species. The structure of the latter is originating from the densest possible packing of cations and ligands and is not in any mean related to the structure of the original precursor molecules. The oxo-alkoxide molecules serve apparently as nuclei for the formation of larger aggregates that become phase separated and can be referred to as Micelles Templated by Self-Assembly of Ligands. The core of the latter is practically always crystalline or at least short-order organized, while the shell is, in the hydrolytic approach, constructed of hydrated amorphous oxide and ligands that stabilize the colloid via interaction with the solvent. The thermal treatment either in solution or for a dry xerogel is thus indispensable for preparation of fully crystalline particles and offers also an opportunity to control the final size of the particles via further aggregation. To guarantee the formation of complex oxide nanoparticles, the conditions insuring phase separation for each component have to be achieved. This means that the use of stoichiometric or super-stoichiometric quantities of water is required together with a solvent guaranteeing minimal solubility of hydrolyzed species. The approaches to complex oxide phases and oxides doped with lanthanide cations are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号