首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   1篇
化学   5篇
  2021年   1篇
  2016年   1篇
  2014年   1篇
  2007年   1篇
  1977年   1篇
排序方式: 共有5条查询结果,搜索用时 218 毫秒
1
1.
2.
Lanthana modified sol-gel titania is prepared through particulate sol-gel route and the physico-chemical characterizations of the prepared systems were done using X-Ray diffration, EDX, BET surface area-pore volume measurements and TG-DTG analysis. Benzophenone was observed to be the sole product in the TiO2 photocatalyzed oxidation of benzhydrol in oxygen purged acetonitrile. The influence of various parameters, like irradiation time, amount of catalyst, concentration of the catalyst and other factors on the photocatalytic oxidation has been investigated. The proposed mechanism envisages the involvement of a superoxide radical anion.  相似文献   
3.
Catalytic activity of palladium catalysts with two different types of carbon support, Norit (an activated carbon), and bamboo-shaped carbon nanotubes (BCNT) have been tested for benzophenone hydrogenation. The selectivity toward the two possible reaction products (benzhydrol and diphenylmethane) can be directed by the catalyst support. It has been found that the Norit support preferred the over-hydrogenation of benzhydrol to diphenylmethane. The BCNT support proved to be much more selective and resulted as much as 99.3% benzhydrol selectivity at 96.3% benzophenone conversion. The high benzhydrol selectivity might be explained by the presence of covalently bonded nitrogen atoms in the catalyst (BCNT: 6.19 w/w%, Norit 0.54 w/w%) that can inhibit the over-hydrogenation process, thereby BCNTs are better catalyst supports for benzhydrol production than the commonly used activated carbon–supported catalysts.  相似文献   
4.
采用简捷高效的方法在交联聚苯乙烯(CPS)微球表面同步合成与固载了N-羟基邻苯二甲酰亚胺(NHPI),制备了非均相催化剂CPS-NHPI微球,我们将其用于分子氧对二苯甲醇的氧化过程,探索研究了其催化性能与催化氧化机理,并考察了主要因素对其催化性能的影响.研究结果表明,将固体催化剂微球CPS-NHPI与过渡金属盐组合形成复合催化剂,可有效地催化分子氧对二苯甲醇的氧化过程.在几种过渡金属盐中,助催化效果的顺序是VO(acac)2Co(OAc)2Co Cl2Mn(OAc)2.显然,乙酰丙酮氧钒盐的助催化效果最好.共催化体系CPS-NHPI+VO(acac)2可在温和条件(75℃、常压的氧气)下高效地将二苯甲醇催化氧化转变为二苯甲酮(二苯甲醇转化率为35.8%,且二苯甲酮是唯一产物),显示出良好的催化活性与优良的催化选择性,催化氧化反应遵循自由基链式反应的机理.体积比为7∶3的乙腈与乙酸乙酯的混合液为适宜的反应溶剂;VO(acac)2与固载NHPI的摩尔比为1∶15时,助催化剂的投加量较为适宜.固体催化剂CPS-NHPI还具有良好的再循环使用性能.  相似文献   
5.
The present study describes the synthesis and preliminary testing of molecularly imprinted polymers (MIPs) as scavenger resins for removal of the genotoxic impurities (GTI) benzhydrol from active pharmaceutical ingredients (API). A new molecularly imprinted polymer was synthesized using benzhydrol (template molecule), methacrylic acid (functional monomer), ethylene glycol dimethacrylate (cross‐linker), 2,2′‐azobisisobutironitril (intiator) and chloroform (porogenic solvent). To compare the performance of this polymer, a control polymer or non‐imprinted polymer (NIP) was prepared under the same conditions without the use of template molecule. The synthesized polymers were characterized by FT‐IR spectroscopy. Selectivity of the molecularly imprinted polymer for absorption benzhydrol impurities through adsorption experiments reviews and the results were compared with the adsorption of impurities by NIP. Various parameters were optimized such as time, pH, type of eluent for elution of impurities from polymer, concentration of sample and saturation of polymer. The proposed method was applied for removal of benzhydrol from Diphenhydramine hydrochloride syrup and passing it through the MIPs led to the quantitative removal of benzhydrol.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号