首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
  国内免费   1篇
化学   13篇
力学   2篇
数学   1篇
物理学   2篇
  2020年   6篇
  2017年   5篇
  2016年   3篇
  2015年   1篇
  2014年   1篇
  2009年   1篇
  2005年   1篇
排序方式: 共有18条查询结果,搜索用时 15 毫秒
1.
This study explores the effects of 3-glycidoxypropyltrimethoxysilane (3-GPTS) modified Na-montmorillonite (Na-Mt) nanoclay addition on mechanical response of unidirectional basalt fiber (UD-BF)/epoxy composite laminates under tensile, flexural and compressive loadings. Fourier transform infrared (FT-IR), X-ray diffraction (XRD) and simultaneous thermal analysis (STA) data confirmed the reaction mechanism between the silane compound and Mt. It was demonstrated that addition of 5 wt % 3-GPTS/Mt resulted in 28%, 11% and 35% increase in flexural, tensile and compressive strengths. Scanning electron microscopy (SEM) clarified the improvement in the adhesion between the basalt fibers and matrix in the case of Mt-enhanced epoxy specimens. Also, a theoretical route based on a Euler-Bernoulli beam-based approach was employed to estimate the compressive properties of the composites. The results demonstrated good agreement between theoretical and experimental approaches. Totally, the results of the study show that matrix modification is an effective strategy to improve the mechanical behavior of fibrous composites.  相似文献   
2.
This paper investigates the characterization of in-plane shear properties of thermoplastic composites reinforced with Kevlar/basalt fabrics. Different fabrics had architectures of two dimensional plain woven (2D-P) and three dimensional angle-interlock (3D-A). Intralayer hybridization was performed during the weaving of the fabrics with the combination of Kevlar and basalt yarns. Five 2D-P and three 3D-A composite laminates were manufactured with polypropylene (PP) as a matrix, using compression molding. Iosipescu shear tests were carried out to evaluate the in-plane shear properties. The experimental results revealed that the shear properties including shear modulus, shear strength and shear failure strain of homogeneous composites were improved by 6.5–14.9%, 4.3–19.7%, and 3.2–46.7%, respectively. Similarly, change in the fabric architecture from 2D-P to 3D-A also enhanced the shear strength and shear failure strain by 32.0–41.6% and 7.2–22.5%, respectively. Intralayer hybrid composites had better in-plane shear properties than the interlayer hybrid composites. The fracture morphologies of the specimens were examined by scanning electron microscopy (SEM).  相似文献   
3.
In the present work, dynamic compression response of polypropylene (PP) based composites reinforced with Kevlar/Basalt fabrics was investigated. Two homogeneous fabrics with Kevlar (K3D) and Basalt (B3D) yarns and one hybrid (H3D) fabric with a combination of Kevlar/Basalt yarns were produced. The architecture of the fabrics was three-dimensional angle-interlock (3D-A). Three different composite laminates were manufactured using vacuum-assisted compression molding technique. The high strain rate compression loading was applied using a Split-Hopkinson Pressure Bar (SHPB) set-up at a strain rate regime of 3633–5235/s. The results indicated that the dynamic compression properties of thermoplastic 3D-A composites are strain rate sensitive. In all the composites, the peak stress, toughness and modulus were increased with strain rate. However, the strain at peak stress of Basalt reinforced composites (B3D, H3D) decreased approximately by 25%, while for K3D specimens it increased approximately by 15%. The K3D composites had a higher strain rate as compared to the B3D and H3D composites. In the case of K3D composite, except strain at peak stress, remaining dynamic properties were lower than the B3D composite, however, hybridization increased these properties. The failure mechanisms of 3D-A composites were characterized through macroscopic and scanning electron microscopy (SEM).  相似文献   
4.
建立了飞秒激光剥蚀多接收等离子体质谱(fsLA-MC-ICP-MS)原位微区分析玄武岩玻璃中Mg同位素的方法.溶液进样-干气溶胶条件下浓度匹配实验表明,样品和标准样品中Mg浓度比在0.4 ~3.0时,可获得准确样品Mg同位素组成.激光剥蚀条件对Mg同位素的准确测定有明显的影响,激光剥蚀斑束和扫描速率变化,使得质谱仪的质量歧视效应随进样负载量不同而产生较大的变化,并影响样品Mg同位素组成;激光剥蚀频率与δ25 Mg正相关,与δ26 Mg负相关,当剥蚀频率大于4 Hz时,δ25 Mg和δ26 Mg趋于平稳;超快激光的能量密度对Mg同位素组成影响较小.利用本方法对国际标准样品的分析结果与参考值在误差范围内一致.本方法具有制样简单、快速的特点,且测试结果准确可靠,为火山玻璃中Mg同位素分析提供了有效的分析手段.  相似文献   
5.
Thermomechanical behavior of basalt fiber- and glass fiber-reinforced plastics (BFRP and GFRP) was characterized under the same conditions. The effect of an EDI binder formulation on Martens temperature was studied by varying the contents of a curing agent from 75 to 95 parts by weight (pbw) and of an accelerator from 1 to 2 pbw with respect to 100 pbw of an ED-22 resin. The Martens temperature was found to vary from 90 to 113 °С, depending on the component ratio. An optimum binder formulation was chosen, exhibiting stable results on heat resistance after curing at 150 °С for 2 and 10 h. To achieve different degree of conversion, BFRPs and GFRPs were fabricated using the chosen formulation and were cured at 100-110 °С for 30 min and then at 150 °С for 1 and 4 h. The said formulation can be recommended, with the maximum transition point of BFRPs and GFRPs reaching 137 °С.  相似文献   
6.
The development of novel composite materials with beneficial mechanical, thermal and electrical properties often focus only on the final properties of the products. However, in many cases their significant application potential may be suppressed by limitations resulting from their rheological and processing properties. The isotactic polypropylene (iPP) composites filled with basalt powder (BP) are known for their good thermomechanical stability and stiffness. The paper presents the complex results of off-line rheological measurements (oscillatory, capillary and torque rheometry) related to processing behavior obtained in a laboratory conditions with the use of a processing machine (single screw extruder), which allow understanding the different manner of the processing behavior occurring during the melt processing of iPP-BP composites. It was found that the addition of BP may cause unusual, beneficial effect of lowered viscosity of the melt. While the addition of up to 5 wt% of BP results in a profitable reduction of the pressure in the barrel during extrusion without influence on the throughput, a higher amount of the filler may lead to significant processing limitations due to strong wall slip.  相似文献   
7.
研究区地下水主要为玄武岩类孔洞裂隙水,水文地质模型概化为各向异性非均质,根据第四系玄武岩承压含水层中地下水的分布特征及流动规律,建立二维非稳定流数学模型,采用广义差分法对其求解.通过研究区井群对模型进行识别、验证.结果表明,计算模型与实际水文地质条件比较接近;计算水位与实测水位相吻合.为城市地下水可持续性管理提供科学理论依据.  相似文献   
8.
Balancing the performance, durability and safety requirements of automotive systems with the regulatory landscape in an environment of climate change has accelerated the search for sustainable fiber reinforced polymer composites for automobile structures. Glass fiber reinforced thermoplastic polymer composites (GFRP) are widely used in certain structures like front end modules and liftgate; However, they cannot be used in more demanding applications due to their low mechanical properties. Carbon fiber reinforced thermoplastic polymer composites (CFRP) are promising candidates for applications like bonnet, but their use is constrained by cost. Basalt fiber reinforced thermoplastic polymer composites (BFRP) are sustainable materials that can be positioned between GFRP and CFRP in terms of performance and cost-effectiveness. The mechanical performance of the BFRP depend on the quality of the fiber-matrix interface that aids in efficient load transfer from the matrix to the fiber. Typically, basalt fibers are inert in nature and need treatments to improve its adhesion to polymeric matrices. The major chemical treatments that are reviewed in this article include matrix functionalization, silane treatment, functionalized nanomaterial coating and plasma polymerization. The physical treatments reviewed include plasma treatment and milling. It is evident that chemically treating the basalt fiber with a functionalized nanomaterial yields BFRP with a good stiffness – toughness balance that can be used for challenging metal replacements as also in new emerging areas like sensing and 3D printing.  相似文献   
9.
Offshore renewable energy can lead the way towards sustainable energy harvesting and support the achievement of the CO2 reduction target by 2030. To achieve this goal it is necessary to decrease the manufacturing and deployment cost of the offshore devices. This paper focusses on the mechanical, chemical and microstructural assessment of a novel high density polyethylene (HDPE) reinforced with short basalt fibres for potential application as a hull material for wave energy devices. The choice of short fibres ensures the new composite can utilise existing low cost manufacturing methods for HDPE structures. In particular this study compares the properties of material with a recycled HDPE matrix with the properties of a material using a virgin HDPE matrix. The mechanical properties achieved by the novel composites exceed an improvement of ~300% in the properties of the monolithic polymer hence indicating the potential of this material, both for recycled and virgin HDPE. Furthermore, exploration in detail of the interaction fibres/matrix indicated the dynamic reaction between coupling agent and polymeric matrix showing the formation of molecular bonding perpendicular to the fibres, hence enhancing a 3D network that further increases the reinforcement abilities of the fibres.  相似文献   
10.
近年来,混凝土3D打印技术在土木建筑等领域取得了快速的发展和应用。与模板浇筑工艺不同,3D打印在逐行逐层堆叠的建造过程中引入了一定量的层间弱面和空隙,造成了细观非均质性;而且3D打印过程无法自动嵌入钢筋,制备纤维混凝土作为打印材料可有效改善力学性能。本文首先制备了一种适用于挤出型3D打印工艺的玄武岩纤维增强陶砂混凝土,将水平打印层作为XY平面,然后从三个正交方向加载,实验测试了3D打印混凝土的抗压、抗弯等力学性能,提出了各向异性系数及其评估方法。研究结果表明,对于单轴压缩,X方向强度最高,而对于抗弯性能,Y方向强度最高。纤维对挤出型3D打印材料的各向异性影响较大,纤维掺量越大,各向异性越大。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号