首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81篇
  免费   8篇
  国内免费   6篇
化学   6篇
数学   2篇
物理学   87篇
  2023年   1篇
  2018年   1篇
  2017年   1篇
  2016年   4篇
  2015年   3篇
  2014年   3篇
  2013年   3篇
  2012年   4篇
  2011年   5篇
  2010年   4篇
  2009年   5篇
  2008年   7篇
  2007年   7篇
  2006年   4篇
  2005年   6篇
  2004年   2篇
  2003年   2篇
  2002年   3篇
  2001年   6篇
  2000年   3篇
  1999年   4篇
  1998年   5篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   3篇
  1989年   3篇
  1987年   1篇
  1978年   1篇
排序方式: 共有95条查询结果,搜索用时 15 毫秒
1.
The irreversible macroscopic dynamics of the Josephson junction coupled to external wires acting as a current source is derived rigorously from the underlying microscopic Hamiltonian quantum mechanics. The external systems are treated in the singular coupling limit. The use of this limit is explicitly justified via an interpretation of the singular coupling limit in terms of the relative magnitudes of system, reservoir, and coupling energies. The qualitative behavior of the macroscopic dynamical equations is shown to depend sensitively and crucially on the interaction between the wires and the superconductors and on the size of the wires: the dc Josephson effect only happens when one lets Cooper pairs be driven into the junction by collective (i.e., small) reservoirs.  相似文献   
2.
The experimental high-K 2-and 3-quasiparticle bands of well deformed rare-earth nuclei are analyzed.It is found that there exists significant nonadditivity in moments of inertia(MOIs)for these bands.The microscopic mechanism of the rotatiohal bands is investigated by the particle number conserving(PNC)method in the frame of cranked shell model with pairing.in which the blocking effects are taken care of exactly.The experimental rotational frequency dependenEe of these bands is well reproduced in PNC calculations.The nonadditivity in MOIs originates from the destructive interference between Pauli blocking effects.  相似文献   
3.
We analyze the thermodynamics of the Overhauser model and demonstrate rigorously the existence of a phase transition. This is achieved by extending techniques previously developed to treat the BCS model in the quasi-spin formulation. Additionally, we compare the thermodynamics of the quasi-spin and full-trace BCS models. The results are identical up to a temperature rescaling.  相似文献   
4.
The induced Chern-Simons term for a paired electron state is calculated in the quantum Hall system by using a field theory on the von Neumann lattice. The coefficient of the Chern-Simons term, which is the Hall conductance, has not only the usual term proportional to a filling factor due to P (parity) & T (time reversal) symmetry breaking but also correction terms due to P & T & U(1) symmetry breaking. The correction term essentially comes from the Nambu-Goldstone mode and depends on an infrared limit. It is shown that the correction term is related to a topological number of a gap function in the momentum space.  相似文献   
5.
It is shown that the appearance of a fixed-point singularity in the kernel of the two-electron Cooper problem is responsible for the formation of the Cooper pair for an arbitrarily weak attractive interaction between two electrons. This singularity is absent in the problem of three and few superconducting electrons at zero temperature on the full Fermi sea. Consequently, such three- and few-electron systems on the full Fermi sea do not form Cooper-type bound states for an arbitrarily weak attractive pair interaction. Received: 9 February 1998 / Revised and Accepted: 13 May 1998  相似文献   
6.
For both cases with and without interactions, bipartite entanglement of two fermions from a Fermi gas in a trap is investigated. We show how the entanglement depends on the locations of the two fermions and the total particle number of the Fermi gas. Fermions at the edge of trap have longer entanglement distance (beyond it, the entanglement disappears) than those in the center. We derive a lower limitation to the average overlapping for two entangled fermions in the BCS ground state, it is shown to be , a function of Cooper pair number Q and the total number of occupied energy levels M.  相似文献   
7.
Motivated by recent experimental evidences for pressure-induced exciton condensation in intermediate valent Tm[Se,Te] compounds, we re-examine, adopting a BEC–BCS crossover scenario, the formation and stability of exciton insulator versus electron–hole liquid phases.  相似文献   
8.
Ultracold Fermi molecules lying in 2D square optical lattices bilayers with its dipole moment perpendicularly aligned to the layers, having interlayer finite range s‐wave interactions, are shown to form superfluid phases, both, in the Bardeen, Cooper and Schrieffer (BCS) regime of Cooper pairs, and in the condensate regime of bound dimeric molecules. We demonstrate this result using a functional integral scheme within the Ginzburg‐Landau theory. For the deep Berezinskii‐Kosterlitz‐Thouless (BKT) phase transition, we predict critical temperatures around 5nK and 20nK for 23Na40K and OH molecules, which are within reach of current experiments [J. W. Park, S. Will and M. Zwierlein, Phys. Rev. Lett. 114 , 205302 (2015)].

  相似文献   

9.
The 3 P F2 superfluidity of neutron and proton is investigated in isospin-asymmetric nuclear matter within the Brueckner-Hartree-Fock approach and the BCS theory by adopting the Argonne V14 and the Argonne V18 nucleonnucleon interactions. We find that pairing gaps in the 3PF2 channel predicted by adopting the AV14 interaction are much larger than those by the AV18 interaction. As the isospin-asymmetry increases, the neutron 3 pF2 superfluidity is found to increase rapidly, whereas the proton one turns out to decrease and may even vanish at high enough asymmetries. As a consequence, the neutron 3pF2 superfluidity is much stronger than the proton one at high asymmetries and it predominates over the proton one in dense neutron-rich matter.  相似文献   
10.
The interplay between superconductivity (SC) and antiferromagnetism (AFM) is studied in strongly correlated systems of high T c Cuprate superconductors. It is assumed that superconductivity arises due to BCS pairing mechanism in presence of AFM in Cu lattices of Cu-O planes. The total Hamiltonian of the system is mean field one and has been solved exactly by writing the equations of motion for the single particle Green’s functions. Equations for the appropriate single particle co-relation functions are derived and the order parameters corresponding to SC and AFM are determined. It is assumed that the Fermi energy F = 0 and the renormalized localized f energy level coincide with the Fermi level. All the quantities in the final equation for h and Δ are made dimensionless by dividing by 2t, where t is the hopping integral. The temperature dependent values of staggered magnetic field (h) and SC gap (Δ) were determined by solving self-consistent equations for h and Δ. The quasiparticle energy bands are function of AFM gap (h), SC gap (Δ) and hybridization (V). Then the dispersion of quasi-particles are studied at different temperatures by considering temperature dependent values of h and Δ and varying other different model parameters.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号