首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
化学   6篇
  2010年   1篇
  2008年   2篇
  2007年   1篇
  2005年   1篇
  1997年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
The diiron complexes [Fe(Cp)(CO){μ-η22-C[N(Me)(R)]NC(C6H3R′)CCH(Tol)}Fe(Cp)(CO)] (R = Xyl, R′ = H, 3a; R = Xyl, R′ = Br, 3b; R = Xyl, R′ = OMe, 3c; R = Xyl, R′ = CO2Me, 3d; R = Xyl, R′ = CF3, 3e; R = Me, R′ = H, 3f; R = Me, R′ = CF3, 3g) are obtained in good yields from the reaction of [Fe2{μ-CN(Me)(R)}(μ-CO)(CO)(p-NCC6H4R′)(Cp)2]+ (R = Xyl, R′ = H, 2a; R = Xyl, R′ = Br, 2b; R = Xyl, R′ = OMe, 2c; R = Xyl, R′ = CO2Me, 2d; R = Xyl, R′ = CF3, 2e; R = Me, R′ = H, 2f; R = Me, R′ = CF3, 2g) with TolCCLi. The formation of 3 involves addition of the acetylide at the coordinated nitrile and C-N coupling with the bridging aminocarbyne together with orthometallation of the p-substituted aromatic ring and breaking of the Fe-Fe bond. Complexes 3a-e which contain the N(Me)(Xyl) group exist in solution as mixtures of the E-trans and Z-trans isomers, whereas the compounds 3f,g, which posses an exocyclic NMe2 group, exist only in the Z-cis form. The crystal structures of Z-trans-3b, E-trans-3c, Z-trans-3e and Z-cis-3g have been determined by X-ray diffraction experiments.  相似文献   
2.
Palladium, Platinum, and Diiron Complexes with Isocyanoacetate: Ring Closure, Acid‐Induced Ring Opening, Diprotonation Substitution by isocyanoacetate (CNCH2CO2?) of one chloro ligand in trans‐[MCl2(PPh3)2] (M = Pd, Pt) results in the Δ2‐oxazolin‐5‐on‐2‐ato complexes 4a , b , i.e. immediate cyclization occurs in contact with these metal(II) species. In contrast, the open‐chain form of the functional isocyanide is retained in [K(18‐crown‐6][Fe2Cp2(CNCH2CO2)(CO)3] ( 16 ) in which it occupies a terminal position. Protonation (alkylation) of the platinum complex 4b proceeds with ring cleavage and formation of isocyano acetic acid 11 (ethyl isocyanoacetate 12 ) stabilized by metal ion coordination. Protonation of 16 requires two equivalents of acid to yield the aminocarbyne‐bridged complex [{μ‐C=N(H)CH2CO2H}Fe2Cp2(CO)3](BF4) ( 17 ) as the only isolable product. Here isocyanoacetate displays a third kind of reactivity pattern in addition to that at PdII/PtII and that at Cr0/W0 where the primary species [M(CO)5CNCH2CO2]? and [M(CO)5CNCH2CO2H] proved to be the most stable. All of the proposed structures are substantiated by analytical and the usual spectroscopic (IR, NMR{1H, 13C, 31P}, FAB‐MS) data, that of 4b also by an X‐ray structure determination which reveals a practically perpendicular arrangement of the coordination and the ring plane, and a long C2‐O bond as the predetermined breaking point of the heterocycle.  相似文献   
3.
Heating cis-[Ru(S2CNMe2)2(CO)2] and [Ru3(CO)12] in xylene affords octanuclear [Ru85-S)24-S)(μ3-S)(μ-CNMe2)2(μ-CO)(CO)15] resulting from the double carbon-sulfur bond cleavage of two dithiocarbamate ligands. The structure consists of a tri-edge-bridged square of ruthenium atoms with a further ruthenium atom being bound only to the central bridging atom. Studies suggest that it may be formed via the pentanuclear intermediate [Ru54-S)2(μ-CNMe2)2(CO)11] which is formed in trace amounts.  相似文献   
4.
The bridging aminocarbyne complexes [Fe2{μ-CN(Me)(R)}(μ-CO)(CO)2(Cp)2][SO3CF3] (R = Me, 1a; Xyl, 1b; 4-C6H4OMe, 1c; Xyl = 2,6-Me2C6 H3) react with acrylonitrile or methyl acrylate, in the presence of Me3NO and NaH, to give the corresponding μ-allylidene complexes [Fe2{μ-η13- Cα(N(Me)(R))Cβ(H)Cγ(H)(R′)}(μ-CO)(CO)(Cp)2] (R = Me, R′ = CN, 3a; R = Xyl, R′ = CN, 3b; R = 4-C6H4OMe, R′ = CN, 3c; R = Me, R′ = CO2Me, 3d; R = 4-C6H4OMe, R′ = CO2Me, 3e). Likewise, 1a reacts with styrene or diethyl maleate, under the same reaction conditions, affording the complexes [Fe2{μ-η13-Cα(NMe2)Cβ(R′)Cγ(H)(R″)}(μ-CO)(CO)(Cp)2] (R′ = H, R″ = C6H5, 3f; R′ = R″ = CO2Et, 3g). The corresponding reactions of [Ru2{μ-CN(Me)(CH2Ph)}(μ-CO)(CO)2(Cp)2][SO3CF3] (1d) with acrylonitrile or methyl acrylate afford the complexes [Ru2{μ-η13-Cα(N(Me)(CH2Ph))Cβ(H)Cγ(H)(R′)}(μ-CO)(CO)(Cp)2] (R′ = CN, 3h; CO2Me, 3i), respectively.The coupling reaction of olefin with the carbyne carbon is regio- and stereospecific, leading to the formation of only one isomer. C-C bond formation occurs selectively between the less substituted alkene carbon and the aminocarbyne, and the Cβ-H, Cγ-H hydrogen atoms are mutually trans.The reactions with acrylonitrile, leading to 3a-c and 3h involve, as intermediate species, the nitrile complexes [M2{μ-CN(Me)(R)}(μ-CO)(CO)(NC-CHCH2)(Cp)2][SO3CF3] (M = Fe, R = Me, 4a; M = Fe, R = Xyl, 4b; M = Fe, R = 4-C6H4OMe, 4c; M = Ru, R = CH2C6H5, 4d).Compounds 3a, 3d and 3f undergo methylation (by CH3SO3CF3) and protonation (by HSO3CF3) at the nitrogen atom, leading to the formation of the cationic complexes [Fe2{μ-η13-Cα(N(Me)3)Cβ(H)Cγ(H)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (R = CN, 5a; R = CO2Me, 5b; R = C6H5, 5c) and [Fe2{μ-η13-Cα(N(H)(Me)2)Cβ(H)Cγ(H)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (R = CN, 6a; R = CO2Me, 6b; R = C6H5, 6c), respectively.Complex 3a, adds the fragment [Fe(CO)2(THF)(Cp)]+, through the nitrile functionality of the bridging ligand, leading to the formation of the complex [Fe2{μ-η13-Cα(NMe2)Cβ(H)Cγ(H)(CNFe(CO)2Cp)}(μ-CO)(CO)(Cp)2][SO3CF3] (9).In an analogous reaction, 3a and [Fe2{μ-CN(Me)(R)}(μ-CO)(CO)2(Cp)2][SO3CF3], in the presence of Me3NO, are assembled to give the tetrameric species [Fe2{μ-η13-Cα(NMe2)Cβ(H)Cγ(H)(CN[Fe2{μ- CN(Me)(R)}(μ-CO)(CO)(Cp)2])}(μ-CO)(CO)(Cp)2][SO3CF3] (R = Me, 10a; R = Xyl, 10b; R = 4-C6H4OMe, 10c).The molecular structures of 3a and 3b have been determined by X-ray diffraction studies.  相似文献   
5.
The μ-aminocarbyne complexes [Fe2{μ-CN(Me)(R)}(μ-CO)(CO)(NCMe)(Cp)2][SO3CF3] (R = Me, 1a; Xyl, 1b; Xyl = 2,6-Me2C6H3) react with ethynylferrocene to give the corresponding bridging vinyliminium complexes [Fe2{μ-η13-CN(Me)(R)CHC(Fc)}(μ-CO)(CO)(Cp)2][SO3CF3] (R = Me, 2a; R = Xyl, 2b). Insertion of the ethynylferrocene in the metal-carbyne bond is regiospecific, and leads to the formation of only one isomer.Complexes 2a and 2b undergo hydride addition (by NaBH4) affording the enaminoalkylidene complex [Fe2{μ-η13-C(H)(N(Me)2)CHC(Fc)}(μ-CO)(CO)(Cp)2] (3a) and the bis-alkylidene [Fe2{μ-η12-C(N(Me)(Xyl))CH2C(Fc)}(μ-CO)(CO)(Cp)2] (3b), respectively. Upon treatment with NaH, compounds 2a and 2b undergo fragmentation, affording the 1-metalla-2-aminocyclopenta-1,3-dien-5-one complexes [Fe(CO)(Cp){C(N(Me)(R))}CHC(Fc)C(O)}] (R = Me, 4a; R = Xyl, 4b).The molecular structures of 2b, 3b and 4b have been determined by X-ray diffraction studies.  相似文献   
6.
The 15N NMR spectra of the complexes Os3(CO)102-CONHPri)(μ2-C? NHR) (1a, R = Pr; 1b, R = CH2Ph) and Os3(CO)9(NH2Pri)(μ2-CONHPri)(μ2-C? NHR) (2a, R = Pr; 2b, R = CH2Ph) are studied by using the 1H detected (inverse) 1H-15N correlated spectroscopy. The 15N chemical shifts and the 1H-15N coupling constants fall in characteristic regions for each of the coordinated amine, aminocarbyne, and carboxamido ligands and these values are related to their bonding types. The NMR data are discussed in terms of the influence of the paramagnetic term which is the major factor determining the chemical shifts. A comparison is made to understand the 15N chemical-shift differences between the coordinated nitrogen-containing ligands and the corresponding free organic molecules.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号