首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   3篇
化学   2篇
力学   2篇
数学   28篇
物理学   4篇
  2023年   2篇
  2022年   1篇
  2021年   2篇
  2020年   7篇
  2019年   8篇
  2018年   6篇
  2017年   2篇
  2013年   6篇
  2008年   1篇
  2006年   1篇
排序方式: 共有36条查询结果,搜索用时 31 毫秒
1.
We consider the nonlinear problem of inhomogeneous Allen–Cahn equation
?2Δu+V(y)u(1?u2)=0inΩ,?u?ν=0on?Ω,
where Ω is a bounded domain in R2 with smooth boundary, ? is a small positive parameter, ν denotes the unit outward normal of ?Ω, V is a positive smooth function on Ω¯. Let Γ be a curve intersecting orthogonally with ?Ω at exactly two points and dividing Ω into two parts. Moreover, Γ satisfies stationary and non-degenerate conditions with respect to the functional ΓV1/2. We can prove that there exists a solution u? such that: as ?0, u? approaches +1 in one part of Ω, while tends to ?1 in the other part, except a small neighborhood of Γ.  相似文献   
2.
In this paper, we provide a detailed convergence analysis for fully discrete second‐order (in both time and space) numerical schemes for nonlocal Allen‐Cahn and nonlocal Cahn‐Hilliard equations. The unconditional unique solvability and energy stability ensures ? 4 stability. The convergence analysis for the nonlocal Allen‐Cahn equation follows the standard procedure of consistency and stability estimate for the numerical error function. For the nonlocal Cahn‐Hilliard equation, because of the complicated form of the nonlinear term, a careful expansion of its discrete gradient is undertaken, and an H ?1 inner‐product estimate of this nonlinear numerical error is derived to establish convergence. In addition, an a priori bound of the numerical solution at the discrete level is needed in the error estimate. Such a bound can be obtained by performing a higher order consistency analysis by using asymptotic expansions for the numerical solution. Following the technique originally proposed by Strang (eg, 1964), instead of the standard comparison between the exact and numerical solutions, an error estimate between the numerical solution and the constructed approximate solution yields an O (s 3+h 4) convergence in norm, in which s and h denote the time step and spatial mesh sizes, respectively. This in turn leads to the necessary bound under a standard constraint s C h . Here, we also prove convergence of the scheme in the maximum norm under the same constraint.  相似文献   
3.
This paper is concerned with a diffuse interface model for two‐phase flow of compressible fluids with a type of free boundary. We establish the existence and uniqueness of global strong solutions of a coupled Navier‐Stokes/Allen‐Cahn system in 1D.  相似文献   
4.
We consider the Neumann problem of a 1D stationary Allen–Cahn equation with nonlocal term. Our previous paper [4] obtained a local branch of asymmetric solutions which bifurcates from a point on the branch of odd-symmetric solutions. This paper derives the global behavior of the branch of asymmetric solutions, and moreover, determines the set of all solutions to the nonlocal Allen–Cahn equation. Our proof is based on a level set analysis for an integral map associated with the nonlocal term.  相似文献   
5.
We consider the parabolic Allen–Cahn equation in Rn, n2,
ut=Δu+(1?u2)u in Rn×(?,0].
We construct an ancient radially symmetric solution u(x,t) with any given number k of transition layers between ?1 and +1. At main order they consist of k time-traveling copies of w with spherical interfaces distant O(log?|t|) one to each other as t?. These interfaces are resemble at main order copies of the shrinking sphere ancient solution to mean the flow by mean curvature of surfaces: |x|=?2(n?1)t. More precisely, if w(s) denotes the heteroclinic 1-dimensional solution of w+(1?w2)w=0w(±)=±1 given by w(s)=tanh?(s2) we have
u(x,t)j=1k(?1)j?1w(|x|?ρj(t))?12(1+(?1)k) as t?
where
ρj(t)=?2(n?1)t+12(j?k+12)log?(|t|log?|t|)+O(1),j=1,,k.
  相似文献   
6.
We investigate the existence of non-constant uniformly-bounded minimal solutions of the Allen–Cahn equation on a Gromov-hyperbolic group. We show that whenever the Laplace term in the Allen–Cahn equation is small enough, there exist minimal solutions satisfying a large class of prescribed asymptotic behaviours. For a phase field model on a hyperbolic group, such solutions describe phase transitions that asymptotically converge towards prescribed phases, given by asymptotic directions. In the spirit of de Giorgi's conjecture, we then fix an asymptotic behaviour and let the Laplace term go to zero. In the limit we obtain a solution to a corresponding asymptotic Plateau problem by Γ-convergence.  相似文献   
7.
A systematic approach to the construction of ultradiscrete analogues for differential systems is presented. This method is tailored to first-order differential equations and reaction–diffusion systems. The discretizing method is applied to Fisher–KPP equation and Allen–Cahn equation. Stationary solutions, travelling wave solutions and entire solutions of the resulting ultradiscrete systems are constructed.  相似文献   
8.
9.
Abstract

We consider a space semidiscretization of the Allen–Cahn equation by continuous piecewise linear finite elements. For every mesh parameter h, we build an exponential attractor of the dynamical system associated with the approximate equations. We prove that, as h tends to 0, this attractor converges for the symmetric Hausdorff distance to an exponential attractor of the dynamical system associated with the Allen–Cahn equation. We also prove that the fractal dimension of the exponential attractor and of the global attractor is bounded by a constant independent of h. Our proof is adapted from the result of Efendiev, Miranville and Zelik concerning the continuity of exponential attractors under perturbation of the underlying semigroup. Here, the perturbation is a space discretization. The case of a time semidiscretization has been analyzed in a previous paper.  相似文献   
10.
In this paper, we present two types of unconditionally maximum principle preserving finite element schemes to the standard and conservative surface Allen–Cahn equations. The surface finite element method is applied to the spatial discretization. For the temporal discretization of the standard Allen–Cahn equation, the stabilized semi-implicit and the convex splitting schemes are modified as lumped mass forms which enable schemes to preserve the discrete maximum principle. Based on the above schemes, an operator splitting approach is utilized to solve the conservative Allen–Cahn equation. The proofs of the unconditionally discrete maximum principle preservations of the proposed schemes are provided both for semi- (in time) and fully discrete cases. Numerical examples including simulations of the phase separations and mean curvature flows on various surfaces are presented to illustrate the validity of the proposed schemes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号