首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   114篇
  免费   1篇
  国内免费   26篇
化学   133篇
力学   1篇
物理学   7篇
  2024年   1篇
  2023年   4篇
  2022年   9篇
  2021年   6篇
  2020年   6篇
  2019年   3篇
  2018年   1篇
  2017年   5篇
  2016年   5篇
  2015年   4篇
  2014年   2篇
  2013年   3篇
  2012年   6篇
  2011年   4篇
  2010年   3篇
  2009年   5篇
  2008年   5篇
  2007年   4篇
  2006年   6篇
  2005年   4篇
  2004年   8篇
  2003年   6篇
  2002年   4篇
  2001年   4篇
  2000年   7篇
  1999年   6篇
  1998年   4篇
  1997年   3篇
  1996年   1篇
  1995年   2篇
  1994年   3篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1984年   1篇
排序方式: 共有141条查询结果,搜索用时 31 毫秒
1.
血液净化用吸附剂脱附过程的数学模型研究   总被引:1,自引:0,他引:1  
对已吸附了低密度脂蛋白(LDL)及极低密度脂蛋白(VLDL)达到饱和程度的吸附柱,用1mol/L的生理盐水进行脱附,采用修正Langmuir吸附式建立了连续脱附过程的数学模型,计算结果与实验测定值吻合,表明该数学模型适用于描述类似于LDL及VLDL这类蛋白质大分子的脱附过程。  相似文献   
2.
以生物碱(咖啡因)为衍生化试剂,用浸渍法使其负载于活性炭(AC)上,制成一种新的金属阴离子吸附材料———负载咖啡因-活性炭(CAC)。用ICP-AES研究了该吸附材料对金属阴离子[Mo7O24]6-的吸附性能;考察了其化学稳定性;还研究了不同浓度硫酸和氨水对待测物吸附率和解脱率的影响及共存离子的干扰影响。  相似文献   
3.
A simple isotherm equation for describing gas adsorption on solids showing heterogeneity of microporous structure is proposed. It is shown that this equation gives a good representation of the experimental data of argon, nitrogen and benzene adsorption on different types of activated carbons. Its parameters may be used to characterize heterogeneity of microporous structure of the solids.
Eine einfache Isotherme zur Beschreibung der Gas-Adsorption an heterogenen mikroporösen Feststoffen
Zusammenfassung Es wird eine einfache Isotherme zur Beschreibung der Gasadsorption an Feststoffen mit heterogener mikroporöser Struktur vorgeschlagen. Es wird gezeigt, daß diese Gleichung die experimentellen Daten für die Adsorption von Argon, Stickstoff und Benzol an verschiedenen Typen von Aktivkohle gut beschreibt. Die Parameter der Isotherme können zur Charakterisierung der Heterogenität der mikroporösen Struktur von Festkörpern herangezogen werden.
  相似文献   
4.
大孔网状吸附剂在微生物制药分离纯化上的应用   总被引:8,自引:0,他引:8  
本文介绍了20世纪末高分子吸附剂在β-内酰胺类,肽类、糖苷类,醌类,含氮杂环类,多烯类、蒽环类,大环内酯类,聚醚类和其它新抗生素,免疫抑制剂,酶抑制剂以及蛋白质类药物分离纯化上的应用发展状况。  相似文献   
5.
A mathematical model is constructed and solved that could describe the dynamic behavior of the adsorption of a solute of interest in single and stratified columns packed with partially fractal porous adsorbent particles. The results show that a stratified column bed whose length is the same as that of a single column bed, provides larger breakthrough times and a higher dynamic utilization of the adsorptive capacity of the particles than those obtained from the single column bed, and the superior performance of the stratified bed becomes especially more important when the superficial velocity of the flowing fluid stream in the column is increased to accommodate increases in the system throughput. This occurs because the stratified column bed provides larger average external and intraparticle mass transfer and adsorption rates per unit length of packed column. It is also shown that increases in the total number of recursions of the fractal and the ratio of the radii between larger and smaller microspheres that make up the partially fractal particles, increase the intraparticle mass transfer and adsorption rates and lead to larger breakthrough times and dynamic utilization of the adsorptive capacity of the particles. The results of this work indicate that highly efficient adsorption separations could be realized through the use of a stratified column comprised from a practically reasonable number of sections packed with partially fractal porous adsorbent particles having reasonably large (i) total number of recursions of the fractal and (ii) ratio of the radii between larger and smaller microspheres from which the partially fractal particles are made from. It is important to mention here that the physical concepts and modeling approaches presented in this work could be, after a few modifications of the model, applied in studying the dynamic behavior of chemical catalysis and biocatalysis in reactor beds packed with partially fractal porous catalyst particles.  相似文献   
6.
Facile synthesis of two 2-anthracene ammonium-based magnetic ionic liquids (MILs), 2-anthracene ammonium tetrachloroferrate (III) ([2A-A]FeCl4) and 2-anthracene ammonium trichlorocobaltate (II) ([2A-A]CoCl3) was performed by protonation of 2-aminoanthracene, followed complexation with FeCl3/CoCl2. The MILs were tested in the adsorptive removal of Cd2+, As3+, Pb2+ and Cr3+ from water sources. Upon treatment with 10 mg dosage of MILs in 10 mL aqueous solution of 50 ppm each of Cd2+, As3+, Pb2+ and Cr3+, adsorption capacity (mg/g) in the range of 5.73–55.5 and 23.6–56.8 for [2A-A]FeCl4 and [2A-A]CoCl3 respectively were recorded. Thus, the optimization, kinetic and isotherms studies were conducted using the [2A-A]CoCl3 adsorbent. The [2A-A]CoCl3 was more effective in pH 7–9, and equilibrium adsorption was achieved after 60 min contact time. The adsorption process proceeded via the Pseudo-second order pathway and the Langmuir isotherm model is the best fit for the adsorption process (with qmax = 227 – 357 mg/g) of all the targeted metal ions. The [2A-A]CoCl3 adsorbent demonstrated practicality with large distribution and selectivity coefficients of the targeted ions, and up to six times regeneration.  相似文献   
7.
The purpose of this study was to develop an efficient method of biochar modification for effective removal of Se(VI) ions from water. Commercially available biochar produced from wheat straw was impregnated by Fe(NO3)3 (0.8, 4 and 10% w/v) and pyrolyzed at 200 °C. Optimum pH, adsorption kinetics, and Se(VI) adsorption isotherms were determined for the studied biochars. The modification significantly increased biochar’s ability for Se(VI) adsorption. The biochar modified with 10% Fe(NO3)3 has the highest adsorption effectiveness. The experimentally determined maximum adsorption capacity for the biochar modified with 10% Fe(NO3)3 was 14.3 mg g−1 for pH 5, which was the optimum pH value. X-Ray Photoelectron Spectroscopy (XPS) and Photoacoustic Fourier Transform Infrared Spectroscopy (FTIR-PAS) investigation confirmed the presence of iron oxides/hydroxides on the surface of the modified biochar. The modification also resulted in the formation of oxygen containing functional groups. The study proved that the proposed modification can be efficient in increasing the biochar effectiveness in removing Se(VI) from water.  相似文献   
8.
The mechanistic aspects of improved aqueous removal of methyl orange (MO) dyes using high performance novel magnetic MgAlNi barium-ferrite (MgAlNi-BaFe) ternary double layer hydroxide (LDH) nanocomposites is reported in this study. Detailed surface characterization coupled with kinetic, equilibrium, thermodynamics and regeneration studies were undertaken under different operational conditions of temperature (298–318 K), initial concentration (20–100 mg/L), pH (2–6). The kinetic results show that MO sorption was mainly, associated with pseudo-second order and intra-particular diffusion process. The MO adsorption onto the MgAlNi-BaFe nanocomposites suggests a multi-layered sorption process that is endothermic and spontaneous in nature. The MO adsorption mechanism insight taken in cognizance of FTIR, XRD, pKa, zeta potential, the adsorbates surface functional groups and the adsorbate-adsorbent surface charges interactions suggest involvement of hydrogen bonding and n-π interactions, predominantly via physisorption process (ΔG° = −7.406 to −5.69 kJ/mol). The excellent adsorptive performance of the MgAlNi-BaFe adsorbents for removal of MO from water compared with other magnetic LDH nanocomposites was further elucidated via the MgAlNi-BaFe nanomaterials high rates of regeneration and superior performances for three successive desorption-adsorption cycles. This study demonstrates the high potentials of employing MgAlNi-BaFe nanomaterials for removal of dyes from water and wastewater.  相似文献   
9.
In the present study, we attempted to synthesize a novel sorbent from the starch modified montmorillonite for the removal of Pb(II), Cd(II), and Ni(II) ions from aqueous solutions. Structure and properties of the adsorbent were characterized by Fourier-transformed infrared(FT-IR) spectroscopy, X-ray diffraction (XRD), and Field emission scanning electron microscopic (FE-SEM) techniques. Batch experiments were confirmed through the effect of different conditions including pH, contact time, initial metal concentration and adsorbent dose. Specifically, the optimum value of adsorbent dose was achieved as 20 g/l for the removal of almost metal ions. The adsorption data was fitted with the optimum pH value as 5 for all experiments. The contact time at which the uptake of maximum metal adsorption was observed within 45 min for Pb(II), 90 min for Cd(II), and 60 min for Ni(II). In addition, it was revealed in our study that the equilibrium data obeyed the Langmuir model, and the adsorption kinetic followed a pseudo second-order rate model. Obtained results were noticeable for a modified phyllosilicate adsorbent, and with such a simple and low-cost modification for montmorillonite, the potential of this material as an economical and effective adsorbent for the removal of metal ions from aqueous solution was considerably elevated.  相似文献   
10.
Treatment of polluted soil is one of the priorities in the search of a more sustainable planet. Electrochemically assisted soil remediation has been considered a good option for removing organic contaminants contained in soil, including the removal of volatile organic compounds, associated with gaseous streams produced during the treatment. Also, recently, electrochemical gas treatment technologies have been appointed as promising for the treatment of volatile organic compounds. In this work, we review the current opinion about the most recent studies in both areas. The first section focuses on the production of gaseous compounds during soil remediation by conventional and electrochemical systems. The second section describes the recent progress in the integration of adsorption and absorption with electrochemical processes. Finally, we discuss the holistic application of assisted electrochemical technologies in soil remediation, considering also emerging processes recently published in the literature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号