首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
化学   4篇
  2007年   1篇
  2005年   2篇
  2004年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
New polymeric adsorbents (ZH-02, ZH-03) containing benzoyl group for adsorbing and removing 4-methylaniline from its aqueous solutions were prepared. Studies on the isotherms and the comparison of desorption conditions evidenced through the adsorption of 4-methylaniline in water onto ZH-02 and ZH-03, namely that there are chemisorption‘s transitions at a proper higher temperature. Mini-colunm adsorption studies of 4-methylaniline on XAD-4, ZH-02 and ZH-03 at 288 K show that the breakthrough capacities are 2.39, 2.99 and 3.19 mmol/g and the total capacities are 3.45, 3.92 and 4.35 mmol/g, respectively.  相似文献   
2.
In this paper, the adsorption behaviors of phenol on polymeric adsorbents (Amberlite XAD4, NDA101, and D301)were investigated in batch system at 293, 303, and 313K, respectively. As the results shown, the adsorption isotherms of phenol on all adsorbents can be well fitted by Langmuir and Freundlich equations, which indicate a favorable and exothermic process. The adsorption capacity on a newly developed aminated adsorbent, NDA101, on which adsorption could be achieved by both hydrogen bonding interaction and π-π interaction, are higher than that on a weak base adsorbent, D301, on which adsorption could be achieved by hydrogen bonding interaction only, and on a nonpolar adsorbent, XAD4, on which adsorption could be achieved by π-π interaction only. The results of this paper indicate that the synergistic effect of some weak interactions, which occur simultaneously would contribute more to the adsorption than that occur individually.  相似文献   
3.
This paper presents experimental observations on the adsorption of individual solutes by a simple thermodynamic framework, and the equilibrium adsorption of ethyl benzoate and diethyl phthalate on phenolic resin adsorbent in hexane solutions within the temperature range of 293-313 K. The experimental results show that the Freundlich adsorption law is applicable to the adsorption of ethyl benzoate and diethyl phthalate on the adsorbent, since all the correlative factors R‘are larger than 0.99. The negative values of all the isosteric adsorption enthalpies for ethyl benzoate and diethyl phthalate indicate that they undergo exothermic processes, while their magnitudes (19-28 kJ/mol) manifest a hydrogen bonding sorption process. Other thermodynamic properties: the free energy changes and the entropy change associated with the adsorption have been calculated from the Gibbs adsorption equation and the Gibbs-Helmholtz equation.  相似文献   
4.
In the present study the adsorptive properties of p-aminobenzoic acid with hypercrosslinked and multi-functional polymeric adsorbents at different solution pHs were systematically investigated in accordance with the particular physicochemical characteristics of the aromatic amphoteric compound involving both Lewis acid and Lewis base functional groups. It was found that the equilibrium adsorption data of the three polymeric adsorbents fitted well in the Langmuir and Freundlich isotherm equations. Studies at various pH levels indicate that the capacity of the adsorbents for adsorption of the ionic forms of adsorbate is less than that for the corresponding neutral species. At pH 3.78, the adsorption capacities of the three adsorbents are the highest. Whereas the adsorption property of multi-functional polymeric adsorbent NJ-99 is the largest, which may be attributed to the strong hydrogen-bonding interaction between the amino groups on the resin and the carboxyl group of p-aminobenzoic acid. The trend of the adsorption capacities of the three adsorbents towards p-aminobenzoic acid with the solution pH is in accord with the dissociation curve of the neutral molecular p-aminobenzoic acid. The adsorption forces include π-π interaction, hydrogen-bonding interaction and electrostatic attraction or repulsion when there exist the molecular and ionic adsorbing species at different pHs in aqueous solution.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号