首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   0篇
  国内免费   2篇
化学   14篇
数学   1篇
物理学   2篇
综合类   4篇
  2017年   1篇
  2014年   2篇
  2013年   2篇
  2012年   2篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2007年   5篇
  2005年   2篇
  1999年   1篇
  1998年   1篇
  1995年   1篇
排序方式: 共有21条查询结果,搜索用时 62 毫秒
1.
Sensor networks consisted of low-cost, low-power, multifunctional miniature sensor devices have played an important role in our daily life. Light and humidity monitoring, seismic and animal activity detection, environment and habitat monitoring are the most common applications. However, due to the limited power supply, ordinary query methods and algorithms can not be applied on sensor networks. Queries over sensor networks should be power-aware to guarantee the maximum power savings. The minimal power consumption by avoiding the expensive communication of the redundant sensor nodes is concentrated on. A lot of work have been done to reduce the participated nodes, but none of them have considered the overlapping minimum bounded rectangle (MBR) of sensors which make them impossible to reach the optimization solution. The proposed OMSI-tree and OMR algorithm can efficiently solve this problem by executing a given query only on the sensors involved. Experiments show that there is an obvious improvement compared with TinyDB and other spatial index, adopting the proposed schema and algorithm.  相似文献   
2.
应用液/液界面微电极对二苯并18-冠-6(DB18-C-6)辅助推动Ba~(2+)在1,2-二氯乙烷/水(DCE/W)界面转移的电化学过程进行了详细探讨,证明该过程遵循TIC机理,是受扩散控制的可逆过程。通过转移电流和反应物浓度之间的线性关系,测定了Ba~(2+)以及用其它方法难以测定的DB18-C-6。  相似文献   
3.
Tetraethylorthosilicate (TEOS)/vinyltriethoxysilane (VTES) hybrid materials were prepared and the hydrolysis and condensation reactions during processing were investigated by means of 29Si NMR solution spectroscopy. The variation of drying characteristics of the coating films was examined with respect to the tetraethylorthosilicate (TEOS)/vinyltriethoxysilane (VTES) ratio, as well as drying temperature, by FT-IR spectroscopy. It is shown that the TO mode of Si–O–Si stretching absorption was enhanced with increasing tetraethylorthosilicate (TEOS) content and drying temperature. Also, the wettability of the coating films on polymer films was independent of the solution composition but enhanced by the precoating of poly(4-hydroxystrene) (PHS) as a wetting agent. The adhesion between the coating and the films was also enhanced when the vinyltriethoxysilane (VTES) content in the coating solution was increased.  相似文献   
4.
We use a first-principles calculation and small-angle neutron scattering (SANS) to investigate the mechanism and the nanosize products of the sol-gel reaction with diphenylsilanediol (DPD) and 3-methacryloxypropyltrimethoxysilane (MEMO) precursors in synthesizing a hybrid waveguide material. It is predicted that switching between a DPD hydroxyl and a MEMO methoxy with a reaction rate of 6.8 x 10(-6) s(-1) at 300 K is the fastest process for the first reaction step, thus generating diphenylmethoxysilanol (DPM) and 3-methacryloxypropyldimethoxysilanol (MEDO) as products. However, we determine that this reaction pathway could be modified by the presence of the H2O released from a catalyst such as Ba(OH)2.H2O. Next, switching between the DPM hydroxyl and the MEDO methoxy is followed to generate diphenyldimethoxysilane (DPDM) and 3-methacryloxypropylmethoxysilanediol (MEMDO). However, condensation between a MEMDO hydroxyl and a DPDM methoxy is found to be most favorable for the third reaction step, which generates the DPDM-MEMDO dimer and CH3OH molecule as products. In a similar fashion, a DPDM methoxy of the DPDM-MEMDO dimer can condense with a MEMDO hydroxyl of the second DPDM-MEMDO dimer to increase the chain, but its reaction rate of 2.8 x 10(-11) s(-1) is predicted to be about 5 times smaller than that between a DPDM methoxy and a MEMDO hydroxyl. This implies that the reaction rate for the larger nanostructures becomes smaller. Additionally, our SANS measurements determine that the final products from our sol-gel reaction are on the nanometer scale, at sizes from 1.76 to 2.36 nm.  相似文献   
5.
Sensor networks consisted of low-cost, low-power, muhifunctional miniature sensor devices have played an important role in our daily life. Light and humidity monitoring, seismic and animal activity detection, environment and habitat monitoring are the most common applications. However, due to the limited power supply, ordinary query methods and algorithms can not be applied on sensor networks. Queries over sensor networks should be power-aware to guarantee the maximum power savings. The minimal power consumption by avoiding the expensive communication of the redundant sensor nodes is concentrated on. A lot of work have been done to reduce the participated nodes, but none of them have considered the overlapping minimum bounded rectangle (MBR) of sensors which make them impossible to reach the optimization solution. The proposed OMSI-tree and OMR algorithm can efficiently solve this problem by executing a given query only on the sensors involved. Experiments show that there is an obvious improvement compared with TinyDB and other spatial index, adopting the proposed schema and algorithm.  相似文献   
6.
Poly(2,5-benzoxzole) (ABPBO)/carbon nanotube (CNT) composites were prepared via in situ polycondensation of “protonated” AB monomer, 3-amino-4-hydroxybenzoic acid hydrochloride, in a mildly acidic poly(phosphoric acid) medium. In situ generated hydrochloric acid during the dehydrochlorination process provided additional acidity to the reaction medium. The enhanced acidity was advantageous for both the purification and dispersion of CNTs. Specifically, it was evident for the purification of as-received single-walled carbon nanotube (SWCNT), which was contained a large portion of impurity (60-70 wt%). On the basis of the data obtained from elemental analysis (EA), thermogravimetric analysis (TGA), infrared spectroscopy (FT-IR), and X-ray diffraction (XRD) as well as scanning electron microscopy (SEM) and transmission electron microscopy (TEM), the resultant composites implicated that individual tube of multi-walled carbon nanotube (MWCNT) and bundles of SWCNT were homogeneously dispersed into the ABPBO matrix. After in situ polymerization in harsh temperature at 175 °C and subsequent work-up processes, CNTs were remained structurally intact in a mild reaction medium. Thus, the PPA medium is indeed viable for the preparation of composite.  相似文献   
7.
Carbon-free CuInSe2 (CIS) thin film with a dense microstructure has been prepared using a novel non-vacuum based fabrication route. CuxSy and In2Se3 binary nanoparticles, approximately 10 nm in size, were synthesized by a low temperature colloidal process. The precursor film was deposited using the coating ink formulated with the binary nanoparticles and pyridine, and then annealed in the rapid thermal annealing (RTA) chamber at 540 °C for 15 min under selenium (Se) atmosphere. Scanning electron micrographs, X-ray diffraction patterns and Raman spectra showed a phase pure carbon-free and dense CIS thin film was prepared in this method. A solar cell device fabricated using this CIS thin film showed the following photovoltaic characteristics: VOC = 350 mV, JSC = 24.72 mA cm−2, FF = 38.73% and η = 3.36% under standard AM 1.5 condition.  相似文献   
8.
Structural evolution and optical properties of the silica-poly(ethylene oxide) hybrid films prepared from -glycidoxypropyltrimethoxysilane (GPTS) and 1-methylimidazol (MI) are studied. Polymerization of the epoxy groups is achieved by using 1-methylimidazol as a thermal curing agent. In liquid state 1H &13 C NMR spectroscopy, it is found that silica condensation mainly occurs without epoxy ring opening. The epoxide polymerization is confirmed by using FT-IR, solid state CP-MAS 13C-NMR, and differential scanning calorimetry (DSC). The hybrid material is densified due to the epoxide polymerization as well as silica condensation with thermal curing. As a result, the thermal curing increases refractive index and extinction coefficient and shifts UV optical absorption edge to longer wavelength.  相似文献   
9.
Cholera toxin, which has been frequently used as mucosal adjuvant, leads to an irreversible activation of adenylyl cyclase, thereby accumulating cAMP in target cells. Here, it was assumed that β2-adrenergic agonist salbutamol may have modulatory functions of immunity induced by DNA vaccine, since β2-adrenergic agonists induce a temporary cAMP accumulation. To test this assumption, the present study evaluated the modulatory functions of salbutamol co-administered with DNA vaccine expressing gB of herpes simplex virus (HSV) via intranasal (i.n.) route. We found that the i.n. co-administration of salbutamol enhanced gB-specific IgG and IgA responses in both systemic and mucosal tissues, but optimal dosages of co-administered salbutamol were required to induce maximal immune responses. Moreover, the mucosal co-delivery of salbutamol with HSV DNA vaccine induced Th2-biased immunity against HSV antigen, as evidenced by IgG isotypes and Th1/Th2-type cytokine production. The enhanced immune responses caused by co-administration of salbutamol provided effective and rapid responses to HSV mucosal challenge, thereby conferring prolonged survival and reduced inflammation against viral infection. Therefore, these results suggest that salbutamol may be an attractive adjuvant for mucosal genetic transfer of DNA vaccine.  相似文献   
10.
The AB‐monomer, 3,4‐diaminobenzoic acid dihydrochloride, was recrystallized from an aqueous hydrochloric acid solution and used to synthesize high‐molecular‐weight poly(2,5‐benzimidazole) (ABPBI). ABPBI/carbon nanotube (CNT) composites were prepared via in situ polymerization of the AB‐monomer in the presence of single‐walled carbon nanotube (SWCNT) or multiwalled carbon nanotube (MWCNT) in a mildly acidic polyphosphoric acid. The ABPBI/SWCNT and ABPBI/MWCNT composites displayed good solubility in methanesulfonic acid and thus, uniform films could be cast. The morphology of these composite films was studied by X‐ray diffraction, scanning electron microscopy, transmission electron microscopy, and atomic force microscopy. The results showed that both types of CNTs were uniformly dispersed into the ABPBI matrix. Tensile properties of the composite films were significantly improved when compared with ABPBI, and their toughness (~200 MPa) was close to the nature's toughest spider silk (~215 MPa). The electrical conductivities of ABPBI/SWCNT and ABPBI/MWCNT composite films were 9.10 × 10?5 and 2.53 × 10?1 S/cm, respectively, whereas that of ABPBI film was 4.81 × 10?6 S/cm. These values are ~19 and 52,700 times enhanced by the presence of SWCNT and MWCNT, respectively. Finally, without acid impregnation, the ABPBI film was nonconducting while the SWCNT‐ and MWCNT‐based composites were proton conducting with maximum conductivities of 0.018 and 0.017 S/cm, respectively. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1067–1078, 2010  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号