首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   306767篇
  免费   51740篇
  国内免费   40427篇
化学   139305篇
晶体学   2414篇
力学   14174篇
综合类   977篇
数学   26061篇
物理学   98334篇
综合类   117669篇
  2024年   1285篇
  2023年   4251篇
  2022年   6378篇
  2021年   7007篇
  2020年   7655篇
  2019年   10024篇
  2018年   9700篇
  2017年   10049篇
  2016年   12879篇
  2015年   13139篇
  2014年   15291篇
  2013年   18465篇
  2012年   19982篇
  2011年   23308篇
  2010年   21683篇
  2009年   21518篇
  2008年   15153篇
  2007年   13866篇
  2006年   12253篇
  2005年   11756篇
  2004年   12360篇
  2003年   9498篇
  2002年   8792篇
  2001年   8240篇
  2000年   6832篇
  1999年   9085篇
  1998年   8139篇
  1997年   7861篇
  1996年   7674篇
  1995年   7325篇
  1994年   7285篇
  1993年   6954篇
  1992年   6009篇
  1991年   5473篇
  1990年   4684篇
  1989年   4193篇
  1988年   3785篇
  1987年   2492篇
  1986年   2201篇
  1985年   1478篇
  1984年   1386篇
  1983年   590篇
  1982年   1087篇
  1981年   881篇
  1980年   885篇
  1979年   594篇
  1978年   585篇
  1977年   685篇
  1976年   1100篇
  1972年   556篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Kinetics and Catalysis - The catalytic properties of a nickel phosphide catalyst supported on silica gel in the reductive amination of carbonyl compounds were studied in a flow reactor using...  相似文献   
2.
In this study, the transverse relaxation time (T2) of activated carbon (AC) in different relative environment humidity was detected firstly by low-field nuclear magnetic resonance (LFNMR). The pore size (diameter) of AC distributions was calculated by the relationship between T2 and surface relaxation rate (ρ), where ρ was obtained by the detection of nine porous materials with known pore size. The results showed that the pore size distributions of AC calculated by ρ < 0.19 nm/ms were in good agreement with that obtained by nitrogen adsorption method and proved that LFNMR as a new detection method was feasible for characterizing AC pore size distribution.  相似文献   
3.
Two series of novel alternating copolyoxamides (PAnT-alt-n2 and PAn2-alt-62) are synthesized via solution/solid-state polycondensation (SSP). The alternating structures are analyzed carefully with 1H NMR and 13C NMR spectra. The melting behaviors, thermal stabilities, crystal structures and crystallinities are systematically evaluated by DSC, TGA and WAXD. The results reveal that these alternating copolyoxamides possess almost perfect alternating chain structures and have high melting temperature (Tm > 270 °C), high crystallinity (Xc > 32%) and high decomposition temperature (T5 > 405 °C) as well as low saturated water absorption (<3.5 wt%), which suggests that they have high potential as engineering plastic of high heat resistant.  相似文献   
4.
Bo  Luo  Gao  Wei  Yu  Yuguo  Chen  Xiaojun 《Nonlinear dynamics》2022,110(1):281-311
Nonlinear Dynamics - The perovskite solar cell (PSC) is one of the most promising photovoltaic candidates along with the highly increasing demand for green electricity. One of the main concerns...  相似文献   
5.
The coordination chemistry of f-block elements (lanthanide and actinide) in molten salts has become a resounding topic in view of its great importance to the research and development (R&D) of molten salt reactors and pyroprocessing. In this Review article, a general overview of the coordination chemistry of f-block elements in molten salts is provided including past achievements and recent advances. Particular emphases are placed on the oxidation state, speciation, and solution structure of f-block metal ions in molten salts, as well as their relationships with the salt composition. Furthermore, this review briefly discusses the spectroscopic and theoretical methods that complement each other in revealing the coordination properties.  相似文献   
6.
Refractory wounds have always been an important issue to healthcare systems, whose healing process is always delayed by multiple factors, including bacterial infections, chronic inflammation, and excessive exudates, etc. Employing multifunctional wound dressings is recognized as an effective strategy to deal with refractory wounds, which has yielded promising outcomes in recent years. Among these advanced wound dressings, fibrous dressings have gained growing attention due to their unique merits. Such wound dressings have demonstrated great potential in delivering theranostic agents, such as antibacterial agents, anti-inflammatory drugs, growth factors, and diagnostic probes, etc., for the purposes of accelerating wound healing. This paper reviews the development of multifunctional fibrous dressings and their applications in treating refractory wounds. The construction approaches of novel fibrous dressing with capabilities of antibacterial, anti-inflammation, exudate management and diagnosis were also introduced. Furthermore, the existing problems and challenges are also discussed briefly.  相似文献   
7.
8.
9.
Low-flow chromatography has a rich history of innovation but has yet to reach widespread implementation in bioanalytical applications. Improvements in pump technology, microfluidic connections, and nano-electrospray sources for MS have laid the groundwork for broader application, and innovation in this space has accelerated in recent years. This article reviews the instrumentation used for nano-flow LC, the types of columns employed, and strategies for multidimensionality of separations, which are key to the future state of the technique to the high-throughput needs of modern bioanalysis. An update of the current applications where nano-LC is widely used, such as proteomics and metabolomics, is discussed. But the trend toward biopharmaceutical development of increasingly complex, targeted, and potent therapeutics for the safe treatment of disease drives the need for ultimate selectivity and sensitivity of our analytical platforms for targeted quantitation in a regulated space. The selectivity needs are best addressed by mass spectrometric detection, especially at high resolutions, and exquisite sensitivity is provided by nano-electrospray ionization as the technology continues to evolve into an accessible, robust, and easy-to-use platform.  相似文献   
10.
The designs of efficient and inexpensive Pt-based catalysts for methanol oxidation reaction (MOR) are essential to boost the commercialization of direct methanol fuel cells. Here, the highly catalytic performance PtFe alloys supported on multiwalled carbon nanotubes (MWCNTs) decorating nitrogen-doped carbon (NC) have been successfully prepared via co-engineering of the surface composition and electronic structure. The Pt1Fe3@NC/MWCNTs catalyst with moderate Fe3+ feeding content (0.86 mA/mgPt) exhibits 2.26-fold enhancement in MOR mass activity compared to pristine Pt/C catalyst (0.38 mA/mgPt). Furthermore, the CO oxidation initial potential of Pt1Fe3@NC/MWCNTs catalyst is lower relative to Pt/C catalyst (0.71 V and 0.80 V). Benefited from the optimal surface compositions, the anti-corrosion ability of MWCNT, strong electron interaction between PtFe alloys and MWCNTs and the N-doped carbon (NC) layer, the Pt1Fe3@NC/MWCNTs catalyst presents an improved MOR performance and anti-CO poisoning ability. This study would open up new perspective for designing efficient electrocatalysts for the DMFCs field.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号