首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  国内免费   2篇
化学   2篇
综合类   2篇
  2021年   1篇
  2019年   2篇
  2018年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
综述了硅烷改性聚醚化合物的结构、制备方法、交联固化机理及硅烷改性聚醚密封胶研究进展及其在装配式建筑、土木工程及工业领域中的应用,并对硅烷改性聚醚基础聚合物制备路线及硅烷改性聚醚密封胶未来的发展方向进行了展望.  相似文献   
2.
以六甲基二硅氧烷和1,1,3,3-四甲基二硅氧烷为原料,在不同酸催化的平衡反应下制备得到1,1,1,3,3-五甲基二硅氧烷,考察了催化剂种类、催化剂用量、投料比及反应温度对1,1,1,3,3-五甲基二硅氧烷收率的影响.结果表明反应速度随催化剂酸性增强而加快;改变原料中六甲基二硅氧烷和1,1,3,3-四甲基二硅氧烷的投料比例,反应产物中1,1,1,3,3-五甲基二硅氧烷的含量呈现出先增大后逐渐减小的趋势;使用不同量的浓硫酸反应1h,当六甲基二硅氧烷和1,1,3,3-四甲基二硅氧烷的投料比例为0.75时,产物中1,1,1,3,3-五甲基二硅氧烷的含量最高.计算得到604酸性树脂催化的六甲基二硅氧烷与1,1,3,3-四甲基二硅氧烷之间平衡反应的活化能Ea=38.39kJ/mol,指前因子A=6.69×105,该反应对于原料六甲基二硅氧烷和1,1,3,3-四甲基二硅氧烷的反应级数分别为0.139和0.229.  相似文献   
3.
邵方君  姚子豪  高怡静  周强  包志康  庄桂林  钟兴  伍川  魏中哲  王建国 《催化学报》2021,42(7):1185-1194,中插50-中插65
饱和及不饱和N-杂环化合物是非常重要的药物中间体.由于它们在催化剂表面的吸附/脱附能力不同,设计具有合适电子结构和几何结构的催化剂用于饱和与不饱和N-杂环化合物的可逆转化具有很大挑战性.目前,负载型纳米金属催化剂通常被用于饱和N-杂环化合物的加氢反应或者不饱和杂环化合物的脱氢反应.然而反应过程中N-杂环化合物与纳米金属的强配位作用,不仅影响其他反应底物与活性位点的接触,而且导致催化剂的循环稳定性较差.在之前的研究中,钌(Ru)催化剂被用于喹啉化合物的选择加氢反应,但反应条件苛刻,循环稳定性差,不能实现杂环化合物的可逆转化.本文在Ru纳米颗粒的晶格中引入杂原子,诱导催化剂表现出不同的几何结构和电子性质,从而调节反应势垒和底物在催化剂表面的脱附能力以优化反应性能.本文以活性炭(AC)为载体,制备了Ru2P,RuO2,RuS2和Ru四种负载型催化剂,以喹啉和四氢喹啉为模型反应物,考察其催化性能.研究发现,Ru2P/AC可在温和条件下同时实现喹啉的加氢反应和四氢喹啉的无受体脱氢反应,且催化剂经过8次循环使用后,其转化率仍高达95%,选择性达到99%,远优于Ru/AC.密度泛函理论计算结果表明,Ru2P中的P原子使得两个相邻的Ru-Ru原子的间距从2.61?增加到2.9?.同时P对催化剂几何结构的变化使反应底物在催化剂表面的吸附行为发生改变,即喹啉和四氢喹啉分子都更容易在Ru2P的表面发生脱附,从而有利于反应进行.通过差分电荷分析,P原子掺杂会将Ru从零价状态调整为缺电子状态.随着P原子掺杂到Ru金属中,反应物表面的电荷大幅度下降,提高了加氢反应和脱氢反应中产物的扩散能力.进一步计算反应路径结果表明,Ru2P实现了N-杂环化合物可逆加氢/脱氢过程中反应与扩散之间的平衡,从而在加氢和脱氢反应中均表现出优异的催化性能.通过浸渍、热解制备的Ru2P/AC对一系列N-杂环化合物的加氢和脱氢反应均表现出优异的催化性能.这主要归因于P原子的掺入稀释了Ru-Ru团簇,引起的几何效应和电子效应的协同作用实现了N-杂环化合物加氢/脱氢过程反应与扩散的平衡,从而提高了可逆反应的催化性能.本文通过原子掺杂调控催化活性的本征结构,从而优化出具有平衡反应和产物扩散的优异催化剂.该合成策略具有直接通用的特点,易于拓展到其它复杂的反应体系当中.  相似文献   
4.
功能化1, 2, 3, 4-四氢喹啉类化合物在医药、生物碱、农药和许多精细化学品的生产中作为具有生物活性的构筑单元和关键中间体,其合成越来越受到人们的关注.通过喹啉化合物的选择性加氢得到py-THQs具有高的原子效率,是一种直接和有效的方法.喹啉化合物的选择性加氢常面临以下问题和挑战:(1)喹啉类化合物的加氢反应具有较高的反应能垒,使得反应需要在苛刻的反应条件下进行;(2)加氢反应过程通常涉及多个中间体,可能会产生副产物;(3)取代喹啉类化合物如乙烯基、酮基、腈基、醛基、氨基、卤素等易还原取代基也可能发生氢化反应,导致选择性下降;(4)由于N-杂环中金属与N原子的强配位效应,催化活性位点易中毒,导致催化剂的可重用性较差.新型、高性能非均相催化剂的开发得到了不断关注,近期取得了一系列进展.氮杂环化合物的催化脱氢也是有机合成的关键步骤,所得到的不饱和氮杂环化合物是各种生物活性化合物和药物的重要合成中间体.同时,从氢气存储的角度出发,有机分子的可逆加氢/脱氢被认为是液体有机储氢系统中一个很有前途的策略.氮杂环化合物的脱氢(释放氢气)和加氢(储存氢气)相结合,构建了一个有效的液态有机氢存储体系.研制一种能够实现氮杂环化合物可逆脱氢/加氢的催化剂越来越受到人们的关注.近几十年来,功能化喹啉化合物选择性加氢高效多相催化剂的可控合成取得了重大突破,使人们能够从整体上关联结构-性能关系.本文综述了近年来该领域在催化剂合成策略、微观结构和化学特性、催化性能评价及其内在关系等方面取得的重要进展.本文首先介绍了单贵金属催化剂(Pd, Pt, Ru, Rh, Ir, Au)和双/多金属催化剂(RuCu, AuPd, PdNi)的研究现状,然后对储量丰富的廉价金属催化剂(Co, Fe, Ni, Cu)进行了综述.综合文献结论,反应介质、载体的性质、金属-载体相互作用、活性金属的电子结构、双金属或多金属协同效应、微观结构(核壳、包覆、蛋黄结构)以及纳米粒子的粒径大小对催化剂的最终催化行为起着重要作用.最后,引入氮杂环化合物的脱氢反应,形成一个可逆的加氢/脱氢体系用于液相有机氢储存系统,并对其反应机理及今后的研究方向进行了探讨.本综述将加深我们对氮杂环化合物催化转化的认识,为研究人员合理设计催化剂提供指导.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号