首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   5篇
  国内免费   3篇
化学   5篇
晶体学   2篇
物理学   6篇
综合类   4篇
  2022年   2篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2011年   1篇
  2010年   6篇
  2009年   2篇
排序方式: 共有17条查询结果,搜索用时 234 毫秒
1.
传统的驾驶行为模型框架把驾驶行为划分为跟驰行为和换道行为两大类,并分别进行模型构建;而综合驾驶行为模型框架则认为跟驰行为和换道行为密不可分,因此将所有驾驶行为看作一个整体来进行建模。文中基于这两种行为模型框架,对数据驱动类人驾驶模型的性能进行分析。首先,建立综合驾驶行为模型框架和跟驰换道组合模型框架,并根据驾驶过程中的影响因素,确定模型的输入和输出。其次,提出了基于跟驰、换道和意图识别模块的两种跟驰换道组合方式:判别组合和概率组合。随后,对原始数据集进行处理筛选,构建综合驾驶行为、跟驰行为、换道行为和意图识别4个样本库,分别用于对相应行为模块进行训练和标定。最后,将两种跟驰换道组合模型与综合驾驶行为模型进行模型精度、安全性、鲁棒性和迁移性比较。结果表明:在模型输入输出、参数标定流程和样本数据库一样的情况下,基于长短期记忆神经网络(LSTM)的类人驾驶模型精度优于基于FNN的模型,其中基于LSTM的模型均方误差可达到0.227 m2,基于FNN的模型均方误差为0.470 m2。而在基于LSTM的模型中,采用跟驰换道组合模型框架的模型比采用综合驾...  相似文献   
2.
The double-side Tl2Ba2 CaCu2O8 (Tl-2212) superconducting thin films were fabricated on CeO2 buffered sapphire substrates. The reactive magnetron sputtering technique was used to grow CeO2 buffer thin films on sapphire substrates. Making use of the metal cerium as a sputtering source, the depositing rate is much higher compared with the CeO2 target. The Ti-2212 thin films on CeO2 buffered sapphire substrates were fabricated by adc magnetron sputtering and post-annealing process. The x-ray diffraction indicates that the thin film is pure Tl-2212 phase with the e-axis perpendicular to the substrate surfaces, and epitaxially grown on the CeO2 buffered sapphire. The critical transition temperature Tc is around 106K, the critical current density Jc is around 3.5 MA/cm^2 at 77K, and the microwave surface resistance R8 at 77K and 10 CHz of the film is as low as 390μ Ω.  相似文献   
3.
CeO_2缓冲层热处理对Tl-2212薄膜超导特性的影响   总被引:1,自引:1,他引:0  
本文采用原子力显微镜(AFM)和XRD研究了生长在蓝宝石(11-02)基片上的CeO_2缓冲层在不同的退火温度和退火时间下表面形貌和相结构的变化,以及对Tl-2212薄膜超导特性的影响.AFM和XRD研究表明,CeO_2薄膜在流动氧环境中退火,表面形貌发生显著的变化;CeO_2薄膜在最佳条件下退火后,可获得原子级光滑表面,结晶质量明显提高.实验结果表明,缓冲层的结晶质量和表面粗糙度与Tl-2212薄膜的超导特性密切相关.在经过最佳条件退火后的CeO_2缓冲层上制备了厚度为500 nm无裂纹的Tl-2212超导薄膜,其临界转变温度(T_c)达到107 K,液氮温度下临界电流密度(J_c)为3.9 MA/cm~2(77 K,0 T),微波表面电阻(R_s)约为281 μΩ(77 K,10 GHz).  相似文献   
4.
在粒径为0.5,2.5,7.5和24 μm的钨粉中,按粒径比3:1,5:1,10:1和15:1分别选取2种粒径进行配比,粗颗粒与细颗粒的质量比均为3:1,然后将不同配比的钨粉压制成钨骨架渗铜,获得W-10Cu复合材料,研究不同粒径配比对材料的密度、硬度、电导率等性能及其显微组织的影响.研究结果表明:随着粒径比的增加,材料的密度、硬度和电导率也随之提高;当粒径配比为10:1和15:1时,熔渗W-10Cu材料的致密度达到98.9%以上,其电导率达到23.8 S/m以上,钨颗粒之间相互黏结,产生了明显的烧结颈.  相似文献   
5.
在蓝宝石基片上,以CeO2为缓冲层制备了高质量的双面Tl2Ba2CaCu2O8(Tl-2212)超导薄膜。以金属铈靶作为溅射源生长了c轴取向的CeO2缓冲薄膜,并对CeO2薄膜进行了高温处理,有效改善了其结晶质量和表面形貌。采用两步法制备了双面的Tl-2212超导薄膜。XRD测试显示,薄膜为纯的Tl-2212相,且其晶格c轴垂直于衬底表面。超导薄膜的Tc为106K,Jc(77K,0T)为3.5MA/cm2,微波表面电阻Rs(77K,10GHz)为390μΩ。  相似文献   
6.
为全面了解中国智能驾驶汽车的落地时机,文中以广州为例,采用实地发放问卷方式对消费者进行智能驾驶汽车接受度调查。文中首先对2010份有效问卷进行信度和效度检验;其次,统计分析了消费者对智能驾驶的认知度、期待程度等9方面的数据;最后,对智能驾驶的期待程度等性能参数和受访者的基本信息进行多重响应和Pearson相关性分析。结果表明:中国消费者对智能驾驶技术持乐观态度,同时也表现出了对技术安全的顾虑和担忧;期待程度与性别(1男2女)等呈显著负相关; 90%的受访者愿意购买智能驾驶汽车,并愿意支付一定的额外费用,这表明未来智能驾驶汽车在中国市场的潜力不容小觑。研究结果将为政府出台智能驾驶汽车扶持政策及法律法规、企业调整智能驾驶技术研发方向及汽车定价等提供客观的参考意见。  相似文献   
7.
换道轨迹规划是无人驾驶车辆核心功能模块之一。传统换道轨迹模型研究场景简单,较少考虑车辆间的相互影响。为此,综合考虑换道过程中车辆之间的相互作用,结合车辆运动特性,引入换道安全控制参量——车间间距,建立考虑前方障碍车辆的多项式协同换道轨迹模型。基于换道安全考虑,采用矩形构建车辆模型分析换道过程中车辆的几何关系。以换道车辆的几何特征角点与前方障碍车辆车尾的相对位置关系建立安全约束方程。与现有多车换道轨迹规划方法相比,轨迹方程形式简单,求解方便,换道安全控制参量物理意义直观明确。仿真实验验证了换道轨迹模型的可行性与合理性,研究结果为无人驾驶多车安全换道轨迹规划研究提供探索性研究。  相似文献   
8.
发泡聚丙烯制备与应用研究进展   总被引:1,自引:0,他引:1  
发泡材料作为一种新型材料,以高分子为基体,大量气泡存在于其内部,被看作以气体为填料的一种复合材料。发泡材料质量轻,比强度高且具备缓冲、吸声、保温等功能,在建筑、汽车、包装、航空航天和家电等领域应用广泛。聚丙烯具有优异的热学、力学和化学稳定性,是制备发泡材料所需要的聚合物基体,聚丙烯发泡材料成为继聚苯乙烯、聚乙烯发泡材料之后21世纪最具潜力的新型发泡材料。本文总结了发泡聚丙烯的制备方法,发泡形态,改性方法和应用现状,并简要展望了这类材料的发展前景,将为发泡聚丙烯材料的应用和发展提供理论基础。  相似文献   
9.
报道了在蓝宝石衬底上制备CeO2缓冲层的原位双温工艺法及其对Tl2Ba2CaCu28(Tl-2212)薄膜超导特性的影响.XPS和AFM测试结果表明,采用原位双温工艺法制备缓冲层,具有工艺简单,薄膜表面光滑,衬底材料原子扩散量少等特点.在先驱膜的高温后退火过程中,40 nm厚的CeO2薄膜就能有效地阻挡衬底材料对超导薄膜底层的扩散.随后制备厚度为530 nm的Tl-2212 关键词: Tl-2212超导薄膜 蓝宝石 氧化铈缓冲层 原位双温工艺法  相似文献   
10.
本文报道了在(001)掺钇氧化锆(YSZ)基片上生长高质量CeO2缓冲层和Tl-2212超导薄膜的制备方法,以及不同厚度的超导薄膜对其特性的影响.XRD和SEM测试表明,在经过合适条件退火的基片和CeO2缓冲层上,所生长的Tl-2212薄膜具有致密的晶体结构、优良的面内和面外取向.最佳样品的临界转变温度(Tc)和临界电流密度为(Jc)可以分别达到107.5 K和 4.24 MA/cm2(77 K,0 T).实验结果表明,采用该工艺所制备的不同厚度Tl-2212超导薄膜的主要指标能满足开发多种超导器件的要求.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号