首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
物理学   2篇
综合类   5篇
  2023年   2篇
  2021年   1篇
  2013年   1篇
  2012年   1篇
  2010年   2篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
采用单液滴非平衡蒸发的数学物理模型,研究了静止环境中甲醇液滴的瞬态蒸发特性,获得了不同环境压力、环境温度和液滴的初始温度条件下液滴半径和液滴温度的变化规律.结果表明,随着环境压力的升高,液滴所达到平衡蒸发温度上升,在环境温度高于临界温度时,液滴蒸发加快,而在环境温度低于液滴临界温度时,液滴蒸发减慢.随着环境温度的上升,液滴蒸发速度加快,液滴达到的平衡温度上升.液滴初始温度对瞬态加热阶段的蒸发有一定的影响,而对平衡蒸发阶段的蒸发几乎没有影响.  相似文献   
2.
针对急冻间内冻品摆放方式对内部流场和温度场的影响,采用CFD模拟与实验相结合的方法,在空载工况下将数值模拟结果与实验测量的速度分布数据进行对比,验证标准k-ε模型的合理性。采用标准k-ε模型,通过数值计算获得不同货架位置、冻品层间距离对冻结均匀性的影响。研究结果表明,货架距离过大或过小都将导致温度不均匀性较高,最优货架距离为100 mm,达到完全冷冻需要6.9 h。优化冻品层间距离后达到完全冷冻需要6.8 h,比优化前减少了6.8%。  相似文献   
3.
采用热重分析仪和气相色谱-质谱联用仪,对柴油/甲醇混合燃料(M0、M5、M15)燃烧排放颗粒的可溶有机物(SOF)组分与形成途径进行了分析.热重分析结果表明,随着燃料中甲醇掺混比的增大,燃烧排放颗粒中SOF的质量减少,失重速率峰值升高:气相色谱-质谱联用分析结果表明,3种颗粒SOF中主要由碳数为9~28的正烷烃和支链烷烃组成,还包括一定数量的多环芳香烃类物质和邻苯二甲酸二异辛酯等其他有机物.随着燃料中甲醇掺混比的增加,燃烧排放颗粒SOF中烷烃含量增加,芳香烃含量减少;颗粒中PAHs主要通过脱氢加乙炔反应形成:烷烃类物质主要来自柴油和少量润滑油.  相似文献   
4.
旋转圆盘雾化器广泛用于工业领域.设计了一种多曲盘旋转雾化装置,介绍了装置的整体设计方案和主要结构参数的确定,并对电机不同工作频率下装置的振动特性进行了试验.结果表明:装置的最大振动位移在装置水平方向,为10 Hz时的0.308 mm;最大振动速度在装置垂直方向,为35 Hz时的11.9 m/s;最大振动加速度在装置垂直方向,为40 Hz时的10.5 m/s2.装置在10 Hz以及35~50 Hz范围内运行时存在较大振动;在15~30 Hz范围内运行相对较为平稳,建议装置在此范围内运行;装置在垂直方向上振动较为明显,应增添垂直方向上约束以实现装置的减振.  相似文献   
5.
以甲醇为燃料,模拟研究了进气温度、过量空气系数、压缩比、EGR率等参数对均质充量压燃(HCCI)发动机燃烧特性的影响,同时确定了HCCI可行的工作范围.采用单区燃烧模型和详细化学反应动力学机理通过CHEMKIN软件模拟了甲醇发动机的燃烧特性.计算结果表明:随着进气温度和压缩比的升高,燃烧始点提前,燃烧持续期缩短,缸内温度、压力、燃烧放热率和压力升高率均升高;过量空气系数对燃烧始点影响很小,对燃烧持续期有一定影响;随着EGR率的增加,着火时刻推迟,燃烧持续期增加,缸内温度、压力、燃烧放热率和压力升高率均降低.发动机转速为1 500 r/min,不使用EGR、过量空气系数为5~9时,可以实现HCCI燃烧,随着EGR率的增加,HCCI燃烧区范围变窄.  相似文献   
6.
考虑到OH基的氧化作用,将OH基氧化模型嵌入KIVA-3V软件内,应用在柴油机排放计算中,验证了模型的正确性,分析了EGR率(5%,10%,15%,20%和25%)对柴油机碳烟排放的影响.结果表明:计算得到的碳烟排放与测量值吻合较好;与原碳烟氧化模型相比,修正的氧化模型能较好地预测碳烟排放;EGR率增加,小负荷下的碳烟排放增加幅度较小,中高负荷下的碳烟排放增加幅度较大,特别是在大EGR率时,碳烟排放增加幅度更大;EGR率增加时,碳烟生成量和氧化量均减少,氧化量减少更多,高质量浓度碳烟分布区域更广;EGR率对OH基的抑制作用在燃烧中期较为明显,而且负荷越大,OH基体积分数随EGR率的加大变得越低.  相似文献   
7.
针对急冻设备工作过程中蒸发器表面结霜问题,设计了一种基于冷凝器余热回收的蓄热-气动式除霜系统。采用CFD仿真与实验相结合的方法设计蓄热器,搭建除霜传动机构实现喷气管上下运动。研究结果表明,正六边型蓄热体蓄热效果好、压降低。蓄热器加热到44℃时与冷空气进行热交换,蓄热器出口处空气温度在5.5 min内能够保持在25℃以上。蒸发器表面开始融霜时,传动机构停留5 s后以100 mm/min的速度运行130 s,蒸发器表面融霜区域达660×100 mm。研究结果为急冻间内蒸发器除霜提供可靠的理论依据。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号