首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   3篇
  国内免费   13篇
化学   22篇
晶体学   4篇
综合类   23篇
  2020年   2篇
  2019年   2篇
  2018年   2篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2012年   1篇
  2011年   2篇
  2010年   5篇
  2009年   5篇
  2008年   2篇
  2007年   8篇
  2006年   2篇
  2005年   5篇
  2004年   4篇
  2003年   4篇
  2001年   1篇
排序方式: 共有49条查询结果,搜索用时 15 毫秒
1.
利用湿法反应制备的LiV3O8的锂离子扩散特性   总被引:4,自引:0,他引:4  
利用V2O5•nH2O湿凝胶和Li2CO3作原料,通过溶液反应和低温焙烧的方法合成了用于锂离子电池正极的LiV3O8.对其前驱体和产品分别进行DTA-TG、XRD表征.LiV3O8用作锂离子电池正极的电化学性能利用恒电流充放电测试进行研究.实验表明活性材料LiV3O8具有较高的充放容量和良好的循环性能.LiV3O8电极的锂离子化学扩散系数由恒电位间歇滴定技术(PITT)来确定,其值依据Li1+xV3O8中x值的不同在10-8~10-10 cm2•s-1的变化范围内.获得的锂离子的扩散活化能为:Ea=25~42 kJ•mol-1(x=0.18~2.5).认为锂离子扩散的最大活化能是由锂离子在Li4V3O8相中的扩散决定的.  相似文献   
2.
目前对锂离子电池正极材料的研究主要为达到如下目标而进行:高的比容量和能量密度,良好的循环性和寿命,资源丰富、价格便宜以及环境友好。已进行了广泛研究的LiCoO_2、LiNiO_2、LiMn_2O_4等锂离子电池正极材料,虽然具有较高的电压平台、良好的稳定性和寿命,但其容量相对较低和价格较高限制了其进一步的应用和发展。  相似文献   
3.
采用新兴的湿化学方法合成了锡氧化物基粉末材料。用X-射线衍射、扫描电镜和电化学方法对材料的微观结构、形貌和电化学性能进行了详细的研究。结果表明,经400 ℃热处理4 h的锡氧化物基材料的颗粒大小均匀,平均粒径约为200 nm。这种材料的可逆充电容量超过570 mAh·g-1,30次循环后平均每次循环的容量衰减只有0.15%。良好的电化学性能表明锡氧化物基材料有望作为新一代锂离子电池的负极材料。  相似文献   
4.
量子化学原理在锂离子电池研究中的应用   总被引:2,自引:0,他引:2  
锂离子电池的发展强烈地依赖于相关材料的性能,因此对材料进行理论设计以寻找具有特定性能的材料以及对电池充放电过程中有关现象的理论解释已经成为材料研究的迫切要求.量子化学和现代计算技术的发展,已基本上能满足这一要求.本文综述了近年来量子化学原理在锂离子电池研究中的应用.重点评述了量子化学原理在锂离子电池电极材料平均插锂电压的预测、锂的嵌入-脱嵌机理研究、锂离子电池正极材料晶格畸变的研究以及其它物理化学性质的理论计算中的应用.  相似文献   
5.
采用冷冻干燥辅助溶胶凝胶法合成富锂锰基Li1.2 Ni0.2Mn0.6O2正极材料,并将其结构、形貌以及电化学性能与传统溶胶凝胶法合成的材料进行比较.X射线衍射(XRD)结果表明,通过冷冻干燥辅助溶胶凝胶法合成的Li1.2Ni0.2Mn0.6O2粉末阳离子混排程度更低,冷冻干燥工艺的参与可以改善晶体结构.扫描电镜(SEM)照片分析表明,与溶胶凝胶样品相比较,冷冻干燥辅助溶胶凝胶法合成样品的颗粒团聚程度较低.电化学性能测试结果表明,冷冻干燥辅助溶胶凝胶法合成的材料具有更好的倍率性能和循环性能.除此之外,电化学交流阻抗测试(EIS)结果表明,冷冻干燥辅助溶胶凝胶法合成的Li1.2Ni0.2Mn0.6O2电荷转移电阻低于溶胶凝胶法制备的材料,增强了反应动力学.  相似文献   
6.
采用溶胶凝胶法制备合成富锂锰基正极材料Li1.2Ni0.2Mn0.6O2,在前期配制金属离子溶液时,通过添加不同量的葡萄糖(葡萄糖添加量分别为试剂总质量的0,6%,12%,36%,48%)来分析其对Li1.2Ni0.2Mn0.6O2的结构、形貌、电化学性能以及倍率性能的影响.恒流充放电测试结果显示,少量葡萄糖(6%,12%)加入,可以明显提高材料首次放电比容量.0.05C首次放电比容量由未加入葡萄糖材料的174 mAh/g提升至添加12%葡萄糖材料的265.9 mAh/g.倍率性能测试结果显示,葡萄糖的加入可以明显提高材料倍率性能.其中葡萄糖添加量为48%的材料倍率性能最好,首次放电比容量达到141 mAh/g,经过0.05C,0.1C,0.2C,0.5C,1C循环测试后再进行0.1C循环测试30次,放电比容量为110 mAh/g,容量保持率为78%.  相似文献   
7.
LiVOPO4/C的溶液沉积-热解法制备与表征   总被引:1,自引:0,他引:1  
以LiVOPO4、蔗糖为原料,采用溶液沉积-热解法制备了LiVOPO4/C复合材料。采用热重与差热分析、X-射线衍射分析、扫描电镜分析以及电化学测试等手段对LiVOPO4/C的微观结构、表面形貌和电化学性能进行了研究.结果表明:蔗糖热分解后在LiVOPO4颗粒的表面包覆形成了一层多孔碳;多孔碳可以有效阻止LiVOPO4颗粒的聚集,增加电极的导电面积,降低电池极化,改善LiVOPO4 的电化学性能;与LiVOPO4粉末相比,LiVOPO4/C具有更高的可逆容量、更稳定的循环性能.  相似文献   
8.
采用高温固相法制备LiNi1/3Co1/3Mn1/3O2,溶胶-凝胶法制备AlPO4包覆LiNi1/3Co1/3Mn1/3O2材料(AlPO4-coated LiNi1/3Co1/3Mn1/3O2).并用XRD、SEM检测等对材料进行了表征,用X-射线衍射、扫描电镜分析以及电化学测试等手段对样品的微观结构、表面形貌和电化学性能进行了研究.结果表明:在AlPO4-coated LiNi1/3Co1/3Mn1/3O2中,AlPO4以无定形态包覆于的表面;AlPO4的存在,阻止了电极与电解质溶液之间的副反应,降低了电极的表面膜阻抗和电荷转移阻抗,加快了锂离子的扩散速度,使得LiNi1/3Co1/3Mn1/3O2的循环性能和倍率性能显著改善.  相似文献   
9.
采用草酸盐共沉淀法合成一系列的Li(Ni1/3Co1/3Mn1/3)1-xCrxO2正极材料(0 ≤x ≤0.1),用X射线衍射仪(XRD)和扫描电子显微镜(SEM)分析合成产物的晶体结构及表面形貌;利用充放电仪测定了产物的电化学性能.结果表明,合成的Li(Ni1/3Co1/3Mn1/3)1-xCrxO2( x = 0.01,0.03,0.05,0.07) 均保持α-2NaFeO2 层状结构相,属于空间R3m点群.Li(Ni1/3Co1/3Mn1/3)0.95Cr0.05O2的电化学性能最佳,首次放电容量达158.6 mAh/g,在2.5~4.5 V区间30次循环后比容量衰竭率仅为3.92%.Li(Ni1/3Co1/3Mn1/3)0.95Cr0.05O2和Li(Ni1/3Co1/3Mn1/3)CrO2 的电极阻抗变化不同,进而影响其电化学性能.  相似文献   
10.
CuO掺杂纳米SnO2锂离子电池负极材料的合成与电化学性能   总被引:1,自引:0,他引:1  
以SnCl4·5H2O、Cu(NO3)2·3H2O和NH3·H2O为原料,采用化学共沉淀法制备了CuO掺杂的纳米SnO2粉末.运用X射线衍射、扫描电镜等手段对合成粉末进行了表征.将合成粉末作为锂离子电池负极材料,研究了其充放电容量、循环性能和交流阻抗等电化学性能.结果表明:采用化学共沉淀法可以得到平均粒度为87 nm的CuO掺杂的纳米SnO2粉末;在SnO2中掺入CuO,并没有改变SnO2的结构,但能够有效抑制SnO2粒子的长大;CuO掺杂的纳米SnO2粉末的可逆容量可以达到752 mA·g-1,经60次循环后,CuO掺杂的纳米SnO2粉末的容量保持率分别为93.6%,优于纳米SnO2 (92.0%),掺杂CuO改善了纳米SnO2的循环性能.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号