首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  免费   3篇
化学   20篇
数学   1篇
物理学   15篇
无线电   33篇
  2021年   2篇
  2020年   5篇
  2019年   5篇
  2018年   4篇
  2017年   2篇
  2016年   7篇
  2015年   2篇
  2014年   1篇
  2013年   5篇
  2012年   2篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2007年   4篇
  2006年   1篇
  2005年   5篇
  2004年   2篇
  2003年   2篇
  2002年   3篇
  2000年   3篇
  1994年   3篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
排序方式: 共有69条查询结果,搜索用时 828 毫秒
1.
A continous mode CMOS switched capacitor integrator with almost zero offset is presented. The offset is compensated using an auto-zero technique and proper circut elements have been used to attenuate disturbances due to charge injection and clock feedthrough. The circuit includes two parallel paths which operate alternately in order to integrate in one path while compensating the offset in the other path. The circuit is capable of removing the offset voltage and its integral, and many other spurious signals at the output. The designed integrator has an initial offset of about –250 V which raises to an amount of about –400 V after one second of integration.  相似文献   
2.
We show that the nonlinear equation that describes nonparaxial Kerr propagation, together with the already reported bright-soliton solutions, admits of (1 + 1)D dark-soliton solutions. Unlike their paraxial counterparts, dark solitons can be excited only if their asymptotic normalized intensity u2infinity is below 3/7; their width becomes constant when u2infinity approaches this value.  相似文献   
3.
Large‐scale fading (LSF) between interacting nodes is a fundamental element in radio communications, responsible for weakening the propagation, and thus worsening the service quality. Given the importance of channel‐losses in general, and the inevitability of random spatial geometry in real‐life wireless networks, it was then natural to merge these two paradigms together in order to obtain an improved stochastical model for the LSF indicator. Therefore, in exact closed‐form notation, we generically derived the LSF distribution between a prepositioned reference base‐station and an arbitrary node for a multi‐cellular random network model. In fact, we provided an explicit and definitive formulation that considered at once: the lattice profile, the users' random geometry, the effect of the far‐field phenomenon, the path‐loss behavior, and the stochastic impact of channel scatters. The veracity and accuracy of the theoretical analysis were also confirmed through Monte Carlo simulations.  相似文献   
4.
parylene-N is used as a dielectric layer to create ultra low-loss 3-D vertical interconnects and coplanar waveguide (CPW) transmission lines on a CMOS substrate. Insertion loss of 0.013 dB for a 3-D vertical interconnect through a 15-$mu$ m-thick parylene-N layer and 0.56 dB/mm for a 50- $Omega$ CPW line on the parylene-N layer (compared to 1.85 dB/mm on a standard CMOS substrate) are measured at 40 GHz. L-shaped, U-shaped, and T-junction CPW structures are also fabricated with underpasses that eliminate the discontinuities arisen from the slot-line mode and are characterized up to 40 GHz. A 3-D low-noise amplifier using these post-processed structures on a 0.13-$mu$ m CMOS technology is also presented along with the investigation of parasitic effects for accurate simulation of such a 3-D circuit. The 3-D circuit implementation reduces the attenuation per unit length of the transmission lines, while preserving the CMOS chip area (in this specific design) by approximately 25%. The 3-D amplifier measures a gain of 13 dB at 2 GHz with 3-dB bandwidth of 500 MHz, noise figure of 3.3 dB, and output 1-dB compression point of ${+}$ 4.6 dBm. Room-temperature processing, simple fabrication, low-loss performance, and compatibility with the CMOS process make this technology a suitable choice for future 3-D CMOS and BiCMOS monolithic microwave integrated circuit applications that currently suffer from high substrate loss and crosstalk.   相似文献   
5.
Dynamic TDD Fixed Cellular Systems Using Smart and Sectored Antennas   总被引:1,自引:0,他引:1  
There are many benefits in using time division duplex (TDD) instead of frequency division duplex (FDD) schemes in fixed wireless cellular systems. For example, channel reciprocity for a single carrier frequency used on both uplinks and downlinks will allow easy access to channel state information, reduced complexity of RF design, much higher flexibility in handling dynamic traffic, simpler frequency plan, etc. However, there exists a serious limiting factor in using dynamic TDD (D-TDD) in cellular systems. This is due to a steady interference on an uplink in any cell caused by downlink transmissions in other cells. Simulation results show in D-TDD cellular systems, performance is unacceptable, when an omnidirectional antenna is used at base stations. Simulation results also suggest great potential for smart antennas in achieving substantial performance improvement in fixed D-TDD bandwidth-on-demand wireless systems.  相似文献   
6.
This paper presents a newly developed resource-constrained project scheduling method in stochastic networks by merging the new and traditional resource management methods. In each project, the activities consume various types of resources with fixed capacities. The duration of each activity is a random variable with a given density function. Since the backward pass method is implemented for feeding-in resources. The problem is to determine the finish time of each activity instead of its start time. The objective of the presented model is defined as minimizing the multiplication of expected project duration and its variance. The values of activities finish times are determined at decision points when at least one activity is ready to be operated and there are available resources. If at a certain point of time, more than one activity is ready to be operated but available resources are lacking, a competition among ready activities is carried out in order to select the activities which must be operated first. This paper suggests a competition routine by implementing a policy to maximize the total contribution of selected activities in reducing the expected project duration and its variance. In this respect, a heuristic algorithm is developed and compared with the other existing methods.  相似文献   
7.
Normal basis representation is considered to represent the elements of Galois fields. The quadratic equation, Z2Z⊕β=0, is solved directly and a new, simple, regular and expandable hardware structure is introduced to solve this equation. The main advantage of this structure over the structures in non-normal basis representations is its independence from generating polynomial of the field  相似文献   
8.
The purpose of this study was to extract impurities from compounds using a simple separatory bottle to purify target compounds with a foam column and allow for the further characterization of impurities. Charged dyes were used as target compounds due to the ease of detection of dyes and isolated impurities. Foaming agents were used in a glass bottle with a modified cap to separate a target impurity using an appropriately charged ligand. By passing N2 gas through the solution, the surfactants sodium dodecyl sulfate and cetylpyridinium chloride generated foams that separated the dyes, Methylene blue and Orange G, respectively, from a solution containing both dyes. Sodium dodecyl sulfate condensed Methylene blue from the solution with high purity while cetylpyridinium chloride condensed Orange G with less purity. A range of concentrations (0.01–0.5 mmol/L) of dyes were used for separation. The condensability (volume and/or concentration) of the target compound increased as its concentration decreased. This novel separation method is a simple, rapid, inexpensive, and effective way to prepare samples and allows for the characterization of these impurities using sensitive analytical detection techniques.  相似文献   
9.
The integration of nanomaterials with high conductivity into stretchable polymer fibers can achieve novel functionalities such as sensing physical deformations. With a metallic conductivity that exceeds other solution‐processed nanomaterials, 2D titanium carbide MXene is an attractive material to produce conducting and stretchable fibers. Here, a scalable wet‐spinning technique is used to produce Ti3C2Tx MXene/polyurethane (PU) composite fibers that show both conductivity and high stretchability. The conductivity at a very low percolation threshold of ≈1 wt% is demonstrated, which is lower than the previously reported values for MXene‐based polymer composites. When used as a strain sensor, the MXene/PU composite fibers show a high gauge factor of ≈12900 (≈238 at 50% strain) and a large sensing strain of ≈152%. The cyclic strain sensing performance is further improved by producing fibers with MXene/PU sheath and pure PU core using a coaxial wet‐spinning process. Using a commercial‐scale knitting machine, MXene/PU fibers are knitted into a one‐piece elbow sleeve, which can track various movements of the wearer's elbow. This study establishes fundamental insights into the behavior of MXene in elastomeric composites and presents strategies to achieve MXene‐based fibers and textiles with strain sensing properties suitable for applications in health, sports, and entertainment.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号