首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   0篇
化学   5篇
物理学   4篇
无线电   15篇
  2023年   1篇
  2021年   1篇
  2020年   3篇
  2019年   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2007年   1篇
  2004年   3篇
  2002年   1篇
  1999年   1篇
  1997年   1篇
  1996年   3篇
  1995年   3篇
  1994年   1篇
  1992年   1篇
排序方式: 共有24条查询结果,搜索用时 31 毫秒
1.
This paper explores design options for planar optical interconnections integrated onto boards, discusses fabrication options for both beam turning and embedded interconnections to optoelectronic devices, describes integration processes for creating embedded planar optical interconnections, and discusses measurement results for a number of integration schemes that have been demonstrated by the authors. In the area of optical interconnections with beams coupled to and from the board, the topics covered include integrated metal-coated polymer mirrors and volume holographic gratings for optical beam turning perpendicular to the board. Optical interconnections that utilize active thin film (approximately 1-5 /spl mu/m thick) optoelectronic components embedded in the board are also discussed, using both Si and high temperature FR-4 substrates. Both direct and evanescent coupling of optical signals into and out of the waveguide are discussed using embedded optical lasers and photodetectors.  相似文献   
2.
We have demonstrated and evaluated a grating array outcoupler fabricated by photoelectrochemical (PEC) etching, a manufacturable and practical approach for fabrication of grating-based III-V semiconductor waveguide devices. An array of submicron period gratings was etched into photolithographically delineated areas in a single PEC step. The fabricated devices are: 10-μm wide rib waveguides with 0.35-μm first-order outcoupling gratings; and 10-μm wide rib waveguides with 10 μm×10 μm pixellated areas of gratings. Device characterization demonstrates the effectiveness of outcoupling grating fabrication using PEC and that the pixellated grating outcoupler is an effective and simple means of generating an optical beam array  相似文献   
3.
Copper migration in cdte heterojunction solar cells   总被引:1,自引:0,他引:1  
CdTe solar cells were fabricated by depositing a Au/Cu contact with Cu thickness in the range of 50 to 150Å on polycrystalline CdTe/CdS/SnO2/glass structures. The increase in Cu thickness improves ohmic contact and reduces series resistance (Rs), but the excess Cu tends to diffuse into CdTe and lower shunt resistance (Rsh) and cell performance. Light I-V and secondary ion mass spectros-copy (SIMS) measurements were performed to understand the correlations between the Cu contact thickness, the extent of Cu incorporation in the CdTe cells, and its impact on the cell performance. The CdTe/CdS/SnO2/glass, CdTe/ CdS/GaAs, and CdTe/GaAs structures were prepared in an attempt to achieve CdTe films with different degrees of crystallinity and grain size. A large grain polycrystalline CdTe thin film solar cell was obtained for the first time by selective etching the GaAs substrate coupled with the film transfer onto a glass substrate. SIMS measurement showed that poor crystallinity and smaller grain size of the CdTe film promotes Cu diffusion and decreases the cell performance. Therefore, grain boundaries are the main conduits for Cu migration and larger CdTe grain size or alternate method of contact formation can mitigate the adverse effect of Cu and improve the cell performance.  相似文献   
4.
The combination of resonant tunneling diodes (RTDs) and complementary metal-oxide-semiconductor (CMOS) silicon circuitry can offer substantial improvement in speed, power dissipation, and circuit complexity over CMOS-only circuits. We demonstrate the first integrated resonant tunneling CMOS circuit, a clocked 1-bit comparator with a device count of six, compared with 21 in a comparable all-CMOS design. A hybrid integration process is developed for InP-based RTDs which are transferred and bonded to CMOS chips. The prototype comparator shows sensitivity in excess of 106 VIA, and achieves error-free performance in functionality testing. An optimized integration process, under development, can yield high-speed, low power circuits by lowering the high parasitic capacitance associated with the prototype circuit  相似文献   
5.
A three-dimensional integration technology that electrically connects an independently optimized thin-film device layer to a Si circuitry layer is reported. An epitaxial liftoff GaAs thin-film optical detector is integrated directly on top of Si amplifier circuitry with a planarizing, insulating layer of polymide between the detector and the circuitry. The detector is virtually connected to the circuitry below through an electrical via in the insulator. This integration technology enables monolithic, massively parallel vertical interconnection between two independently optimized device layers. Systems such as image processing arrays should significantly benefit from this massively parallel integration technology  相似文献   
6.
The authors designed a structurally stable nano-in-nano (NANO2) system highly capable of bioimaging via an aggregation-enhanced NIR excited emission and photoacoustic response achieved based on atomically precise gold nanoclusters protected by linear thiolated ligands [Au25(SCnH2n+1)18, n  = 4–16] encapsulated in discoidal phospholipid bicelles through a one-pot synthesis. The detailed morphological characterization of NANO2 is conducted using cryogenic transmission electron microscopy, small/wide angle X-ray scattering with the support of molecular dynamics simulations, providing information on the location of Au nanoclusters in NANO2. The photoluminescence observed for NANO2 is 20–60 times more intense than that of the free Au nanoclusters, with both excitation and emission wavelengths in the near-infrared range, and the photoacoustic signal is more than tripled. The authors attribute this newly discovered aggregation-enhanced photoluminescence and photoacoustic signals to the restriction of intramolecular motion of the clusters’ ligands. With the advantages of biocompatibility and high cellular uptake, NANO2 is potentially applicable for both in vitro and in vivo imaging, as the authors demonstrate with NIR excited emission from in vitro A549 human lung and the KB human cervical cancer cells.  相似文献   
7.
This paper presents a three-dimensional, highly parallel, optically interconnected system to process high-throughput stream data such as images. The vertical optical interconnections are realized using. Integrated optoelectronic devices operating at wavelengths to which silicon is transparent. These through-wafer optical signals are used to vertically optically interconnect stacked silicon circuits. The thin film optoelectronic devices are bonded directly to the stacked layers of silicon circuitry to realize self-contained vertical optical interconnections. Each integrated circuit layer contains analog interface circuitry, namely, detector amplifier and emitter driver circuitry, and digital circuitry for the network and/or processor, all of which are fabricated using a standard silicon integrated circuit foundry. These silicon circuits are post processed to integrate the thin film optoelectronics using standard, low cost, high yield microfabrication techniques. The three-dimensionally integrated architectures described herein are a network and a processor. The network has been designed to meet off-chip I/O using a new offset cube topology coupled with naming and renting schemes. The performance of this network is comparable to that of a three-dimensional mesh. The processing architecture has been defined to minimize overhead for basic parallel operations. The system goal for this research is to develop an integrated processing node for high-throughput, low-memory applications  相似文献   
8.
The integration of a thin film optoelectronic device onto a micromachined movable platform is reported in this letter. This micro-opto-mechanical system, consisting of a thin film AlGaAs/GaAs double heterostructure p-i-n detector integrated onto a polyimide micromachined platform on silicon, has applications which range from fiber optic coupling to sensors. Fiber optic coupling is demonstrated using a stationary fiber positioned above the thin film detector. By applying a voltage between the platform and actuation strips, the platform moves and a change in fiber to detector coupling is observed  相似文献   
9.
The heterogeneous integration of GaN thin-film metal-semiconductor-metal (MSM) photodetectors onto a host substrate of SiO2-Si is reported. Thin-film GaN photodetectors were separated from the lithium gallate (LiGaO2) growth substrate using selective etching, and contact bonded onto a SiO2-Si host substrate. The thin-film MSMs exhibited a dark current of 13.36 pA and an UV photoresponse at 308 nm of 0.11 A/W at a reverse bias voltage of 20 V. This first demonstration of GaN thin-film device integration onto SiO2-Si using a low-temperature integration process, combined with the advances in GaN material quality on LiGaO2 substrates, enables the integration of GaN devices with Si circuitry for heterogeneously integrated systems  相似文献   
10.
Optical interconnection and signal distribution at the backplane, board, and substrate level can be implemented using thin-film active optoelectronic devices embedded in polymer waveguide structures. These active embedded devices eliminate the need for optical beam turning to and from photodetectors and emitters, respectively, for inputs and outputs to the substrate waveguides. In this paper, optical interconnections using fully embedded thin-film metal-semiconductor-metal (MSM) photodetectors in polymer optical waveguides are demonstrated, and the experimental characterization of these thin-film MSMs embedded in polymer waveguides is reported. To illustrate the potential for high-level signal distribution at the backplane, board, and substrate levels, a 1/spl times/4 balanced multimode interference (MMI) coupler has also been demonstrated in a photoimageable polymer for the first time. Finally, a 1/spl times/4 thin-film MSM photodetector array has been embedded in the output arms of the a photoimageable polymer MMI for the first time, and the MSM array photocurrent outputs from the 4 arms show that highly balanced optical signal distribution has been achieved.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号