首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   0篇
化学   3篇
数学   10篇
物理学   3篇
无线电   9篇
  2019年   1篇
  2017年   2篇
  2016年   2篇
  2014年   1篇
  2012年   2篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2005年   1篇
  2002年   1篇
  2001年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1990年   2篇
  1987年   1篇
  1977年   1篇
排序方式: 共有25条查询结果,搜索用时 15 毫秒
1.
A method for line interference reduction to be used in signal-averaged electrocardiography (SAECG) systems is proposed and its performance is analyzed. This new method is an adaptation of a previously reported technique for removal of line interference from conventional electrocardiograms. It involves the recording of a line reference signal simultaneous with the lead signals, so that a shifted and sealed version of it can be used to subtract line interference from the leads. It is shown that this line interference subtraction method can reduce line interference effectively and without introducing any additional noise into the ECG signal. It is also shown that Late Potential diagnostic decisions are not altered when this filter is applied. It is recommended that this technique be used in SAECG when line interference is unavoidable  相似文献   
2.
An experimental study of induced-current electrical impedance tomography verifies that image quality is enhanced by employing six rather than three induction coils by increasing the number of independent measurements. However, with an increasing number of coils, the inverse problem becomes more sensitive to measurement noise. Using 16 electrodes to measure surface voltages, it is possible to collect 6×15=90 independent measurements. For comparison purposes, images of two-dimensional conductivity perturbations are reconstructed by using the data for three and six coils with the truncated pseudoinverse algorithm. By searching for the optimal truncation index that minimizes the noise error plus the resolution error, the signal-to-noise ratio of the data acquisition system was established as 58 db. Images obtained with this six-coil system reveal the sizes and locations of the conductivity perturbations. This system also provides images within the central region of the object space, a capability not achieved in previous experimental studies using only three circular coils. Nevertheless, the three-coil system can identify the conductivity perturbations near the periphery. However, it displays shifts in the locations and spread in the sizes of perturbations near the center of the object  相似文献   
3.
We consider mathematical programming problems with the so-called piecewise convex objective functions. A solution method for this interesting and important class of nonconvex problems is presented. This method is based on Newton??s law of universal gravitation, multicriteria optimization and Helly??s theorem on convex bodies. Numerical experiments using well known classes of test problems on piecewise convex maximization, convex maximization as well as the maximum clique problem show the efficiency of the approach.  相似文献   
4.
5.
Electric currents are applied to body in numerous applications in medicine such as electrical impedance tomography, cardiac defibrillation, electrocautery, and physiotherapy. If the magnetic field within a region is measured, the currents generating these fields can be calculated using the curl operator. In this study, magnetic fields generated within a phantom by currents passing through an external wire is measured using a magnetic resonance imaging (MRI) system. A pulse sequence that is originally designed for mapping static magnetic field inhomogeneity is adapted. AC current in the form of a burst sine wave is applied synchronously with the pulse sequence. The frequency of the applied current is in the audio range with an amplitude of 175-mA rms. It is shown that each voxel value of sequential images obtained by the proposed pulse sequence is modulated similar to a single-tone broadband frequency modulated (FM) waveform with the AC magnetic field strength determining the modulation index. An algorithm is developed to calculate the AC magnetic field intensity at each voxel using the frequency spectrum of the voxel signal. Experimental results show that the proposed algorithm can be used to calculate AC magnetic field distribution within a conducting sample that is placed in an MRI system  相似文献   
6.
A Study of Prosthetic Heart Valve Sounds   总被引:1,自引:0,他引:1  
In this paper a new mechanism is proposed for the generation of phonocardiogram (PCG) sounds from implanted mechanical prosthetic heart valves. The structures in the chest, the heart, its partitions, and major vessels, constitute a frequency selective system excited by the rapidly decelerating valve occluder. It is shown that the source, the rapidly decelerating valve, has a wide and flat power spectrum and hence is an impulsive excitation that couples energy to the resonance modes specified by the structures in the chest. Consequently, the PCG signal is composed of decaying sinusoids. The parameters of the decaying sinusoids are estimated, and it is observed that the power spectra of the PCG signals have two dominant peaks in the frequency band of 200-500 Hz. The energy coupled to these two modes depends on the state of the valve. With thrombus the decelerating occluder slows down and becomes a broader pulse concentrating the energy to the lower resonance mode. This is verified by experiments on 30 patients during postoperative time course. However, no significant change in the resonance frequencies are observed which is an evidence for their anatomical and not valvular dependence.  相似文献   
7.
In this article, we provide a global search algorithm for maximizing a piecewise convex function F over a compact D. We propose to iteratively refine the function F at local solution y by a virtual cutting function p y (⋅) and to solve max {min {F(x)−F(y),p y (x)}∣xD} instead. We call this function either a patch, when it avoids returning back to the same local solutions, or a pseudo patch, when it possibly yields a better point. It is virtual in the sense that the role of cutting constraints is played by additional convex pieces in the objective function. We report some computational results, that represent an improvement on previous linearization based techniques.  相似文献   
8.
If has been previously proposed that heart valve closure sounds can be modeled by a sum of decaying sinusoids, based on the hypothesis that the heart cavity, heart walls, major vessels, and other structures in the chest constitute a frequency selective linear acoustic system and this system is excited by the rapidly decelerating valve occluder. In this study, the distribution of the parameters of this model for the second heart sound is investigated. For this purpose, heart sounds of 10 patients who have a St. Jude-type bileaflet mechanical heart valve prosthesis in the aortic position are recorded. Recordings are performed at 12 different locations on the surface of the chest. To reliably assign representative parameters to each recording site, signal averaging, model order selection, and a special filtration technique are employed. The results of the analyses are discussed in relation to the above hypothesis on the heart sound generation mechanism. It is observed that site-to-site variation of frequencies of modes does not exceed the accuracy limit of proposed analysis method, but energies of these modes vary on the surface of the chest, and as a result of statistical analysis, it appears that energy of some modes are significantly different between two recording sites  相似文献   
9.
10.
In this article we provide an algorithm, where to escape from a local maximum y of convex function f over D, we (locally) solve piecewise convex maximization max{min{f (x) − f (y), p y (x)} | xD} with an additional convex function p y (·). The last problem can be seen as a strictly convex improvement of the standard cutting plane technique for convex maximization. We report some computational results, that show the algorithm efficiency.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号