首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   225254篇
  免费   2498篇
  国内免费   717篇
化学   107725篇
晶体学   3293篇
力学   7816篇
综合类   5篇
数学   18366篇
物理学   60181篇
无线电   31083篇
  2016年   2502篇
  2015年   1798篇
  2014年   2639篇
  2013年   8310篇
  2012年   5574篇
  2011年   6971篇
  2010年   4940篇
  2009年   5176篇
  2008年   7037篇
  2007年   7539篇
  2006年   7313篇
  2005年   6743篇
  2004年   6176篇
  2003年   5581篇
  2002年   5488篇
  2001年   7033篇
  2000年   5578篇
  1999年   4578篇
  1998年   3795篇
  1997年   3825篇
  1996年   3727篇
  1995年   3455篇
  1994年   3327篇
  1993年   3213篇
  1992年   3710篇
  1991年   3603篇
  1990年   3414篇
  1989年   3438篇
  1988年   3291篇
  1987年   2932篇
  1986年   2756篇
  1985年   3634篇
  1984年   3656篇
  1983年   3069篇
  1982年   3211篇
  1981年   3147篇
  1980年   3007篇
  1979年   3112篇
  1978年   3353篇
  1977年   3142篇
  1976年   3110篇
  1975年   2926篇
  1974年   2870篇
  1973年   2897篇
  1972年   1896篇
  1971年   1606篇
  1968年   2038篇
  1967年   2209篇
  1966年   2017篇
  1965年   1580篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
The European Physical Journal Special Topics - The removal of suspended particles from the interior of a thermocapillary liquid bridge via a finite-particle-size effect restricting the particle...  相似文献   
3.
We study the full counting statistics of transport electrons through a semiconductor two-level quantum dot with Rashba spin–orbit (SO) coupling, which acts as a nonabelian gauge field and thus induces the electron transition between two levels along with the spin flip. By means of the quantum master equation approach, shot noise and skewness are obtained at finite temperature with two-body Coulomb interaction. We particularly demonstrate the crucial effect of SO coupling on the super-Poissonian fluctuation of transport electrons, in terms of which the SO coupling can be probed by the zero-frequency cumulants. While the charge currents are not sensitive to the SO coupling.  相似文献   
4.
5.
In this paper, we present an approach of dynamic mesh adaptation for simulating complex 3‐dimensional incompressible moving‐boundary flows by immersed boundary methods. Tetrahedral meshes are adapted by a hierarchical refining/coarsening algorithm. Regular refinement is accomplished by dividing 1 tetrahedron into 8 subcells, and irregular refinement is only for eliminating the hanging points. Merging the 8 subcells obtained by regular refinement, the mesh is coarsened. With hierarchical refining/coarsening, mesh adaptivity can be achieved by adjusting the mesh only 1 time for each adaptation period. The level difference between 2 neighboring cells never exceeds 1, and the geometrical quality of mesh does not degrade as the level of adaptive mesh increases. A predictor‐corrector scheme is introduced to eliminate the phase lag between adapted mesh and unsteady solution. The error caused by each solution transferring from the old mesh to the new adapted one is small because most of the nodes on the 2 meshes are coincident. An immersed boundary method named local domain‐free discretization is employed to solve the flow equations. Several numerical experiments have been conducted for 3‐dimensional incompressible moving‐boundary flows. By using the present approach, the number of mesh nodes is reduced greatly while the accuracy of solution can be preserved.  相似文献   
6.
7.
In this communication, we report the synthesis of small‐sized (<10 nm), water‐soluble, magnetic nanoparticles (MNPs) coated with polyhedral oligomeric silsesquioxanes (POSS), which contain either polyethylene glycol (PEG) or octa(tetramethylammonium) (OctaTMA) as functional groups. The POSS‐coated MNPs exhibit superparamagnetic behavior with saturation magnetic moments (51–53 emu g?1) comparable to silica‐coated MNPs. They also provide good colloidal stability at different pH and salt concentrations, and low cytotoxicity to MCF‐7 human breast epithelial cells. The relaxivity data and magnetic resonance (MR) phantom images demonstrate the potential application of these MNPs in bioimaging.  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号