首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   228213篇
  免费   2702篇
  国内免费   714篇
化学   109786篇
晶体学   3297篇
力学   7887篇
综合类   4篇
数学   18920篇
物理学   60547篇
无线电   31188篇
  2016年   2651篇
  2015年   1919篇
  2014年   2774篇
  2013年   8471篇
  2012年   5770篇
  2011年   7191篇
  2010年   5059篇
  2009年   5250篇
  2008年   7174篇
  2007年   7652篇
  2006年   7435篇
  2005年   6846篇
  2004年   6264篇
  2003年   5644篇
  2002年   5557篇
  2001年   7054篇
  2000年   5597篇
  1999年   4597篇
  1998年   3829篇
  1997年   3853篇
  1996年   3757篇
  1995年   3482篇
  1994年   3351篇
  1993年   3252篇
  1992年   3736篇
  1991年   3622篇
  1990年   3436篇
  1989年   3458篇
  1988年   3321篇
  1987年   2961篇
  1986年   2781篇
  1985年   3665篇
  1984年   3678篇
  1983年   3094篇
  1982年   3231篇
  1981年   3163篇
  1980年   3031篇
  1979年   3125篇
  1978年   3366篇
  1977年   3149篇
  1976年   3123篇
  1975年   2936篇
  1974年   2888篇
  1973年   2900篇
  1972年   1908篇
  1971年   1612篇
  1968年   2043篇
  1967年   2213篇
  1966年   2025篇
  1965年   1583篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
The European Physical Journal Special Topics - The removal of suspended particles from the interior of a thermocapillary liquid bridge via a finite-particle-size effect restricting the particle...  相似文献   
3.
We study the full counting statistics of transport electrons through a semiconductor two-level quantum dot with Rashba spin–orbit (SO) coupling, which acts as a nonabelian gauge field and thus induces the electron transition between two levels along with the spin flip. By means of the quantum master equation approach, shot noise and skewness are obtained at finite temperature with two-body Coulomb interaction. We particularly demonstrate the crucial effect of SO coupling on the super-Poissonian fluctuation of transport electrons, in terms of which the SO coupling can be probed by the zero-frequency cumulants. While the charge currents are not sensitive to the SO coupling.  相似文献   
4.
5.
In this paper, we present an approach of dynamic mesh adaptation for simulating complex 3‐dimensional incompressible moving‐boundary flows by immersed boundary methods. Tetrahedral meshes are adapted by a hierarchical refining/coarsening algorithm. Regular refinement is accomplished by dividing 1 tetrahedron into 8 subcells, and irregular refinement is only for eliminating the hanging points. Merging the 8 subcells obtained by regular refinement, the mesh is coarsened. With hierarchical refining/coarsening, mesh adaptivity can be achieved by adjusting the mesh only 1 time for each adaptation period. The level difference between 2 neighboring cells never exceeds 1, and the geometrical quality of mesh does not degrade as the level of adaptive mesh increases. A predictor‐corrector scheme is introduced to eliminate the phase lag between adapted mesh and unsteady solution. The error caused by each solution transferring from the old mesh to the new adapted one is small because most of the nodes on the 2 meshes are coincident. An immersed boundary method named local domain‐free discretization is employed to solve the flow equations. Several numerical experiments have been conducted for 3‐dimensional incompressible moving‐boundary flows. By using the present approach, the number of mesh nodes is reduced greatly while the accuracy of solution can be preserved.  相似文献   
6.
7.
In this communication, we report the synthesis of small‐sized (<10 nm), water‐soluble, magnetic nanoparticles (MNPs) coated with polyhedral oligomeric silsesquioxanes (POSS), which contain either polyethylene glycol (PEG) or octa(tetramethylammonium) (OctaTMA) as functional groups. The POSS‐coated MNPs exhibit superparamagnetic behavior with saturation magnetic moments (51–53 emu g?1) comparable to silica‐coated MNPs. They also provide good colloidal stability at different pH and salt concentrations, and low cytotoxicity to MCF‐7 human breast epithelial cells. The relaxivity data and magnetic resonance (MR) phantom images demonstrate the potential application of these MNPs in bioimaging.  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号