首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   192篇
  免费   8篇
  国内免费   6篇
化学   87篇
晶体学   1篇
力学   19篇
数学   34篇
物理学   33篇
无线电   32篇
  2022年   2篇
  2021年   6篇
  2020年   8篇
  2019年   2篇
  2018年   1篇
  2017年   6篇
  2016年   9篇
  2015年   5篇
  2014年   11篇
  2013年   18篇
  2012年   15篇
  2011年   16篇
  2010年   7篇
  2009年   10篇
  2008年   20篇
  2007年   19篇
  2006年   6篇
  2005年   8篇
  2004年   3篇
  2003年   7篇
  2002年   4篇
  2001年   3篇
  2000年   2篇
  1999年   2篇
  1996年   3篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1980年   1篇
  1974年   1篇
  1960年   1篇
排序方式: 共有206条查询结果,搜索用时 437 毫秒
1.
This work reports a new approach for the determination of phenolic compounds based on their interaction with citrate-capped rhodium nanoparticles. Phenolic compounds (i.e., catechins, gallates, cinnamates, and dihydroxybenzoic acids) were found to cause changes in the size and localized surface plasmon resonance of rhodium nanoparticles, and therefore, give rise to analyte-specific spectral and color transitions in the rhodium nanoparticle suspensions. Upon reaction with phenolic compounds (mainly dithydroxybenzoate derivatives, and trihydroxybenzoate derivatives), new absorbance peaks at 350 nm and 450 nm were observed. Upon reaction with trihydroxybenzoate derivatives, however, an additional absorbance peak at 580 nm was observed facilitating the speciation of phenolic compounds in the sample. Both absorbance peaks at 450 nm and 580 nm increased with increasing concentration of phenolic compounds over a linear range of 0–500 μM. Detection limits at the mid-micromolar levels were achieved, depending on the phenolic compound involved, and with satisfactory reproducibility (<7.3%). On the basis of these findings, two rhodium nanoparticles-based assays for the determination of the total phenolic content and total catechin content were developed and applied in tea samples. The obtained results correlated favorably with commonly used methods (i.e., Folin-Ciocalteu and aluminum complexation assay). Not the least, the finding that rhodium nanoparticles can react with analytes and exhibit unique localized surface plasmon resonance bands in the visible region, can open new opportunities for developing new optical and sensing analytical applications.  相似文献   
2.
3.
Multimeric ligands consisting of multiple pharmacophores connected to a single backbone have been widely investigated for diagnostic and therapeutic applications. In this review, we summarize recent developments regarding multimeric radioligands targeting integrin αvβ3 receptors on cancer cells for molecular imaging and diagnostic applications using positron emission tomography (PET). Integrin αvβ3 receptors are glycoproteins expressed on the cell surface, which have a significant role in tumor angiogenesis. They act as receptors for several extracellular matrix proteins exposing the tripeptide sequence arginine-glycine-aspartic (RGD). Cyclic RDG peptidic ligands c(RGD) have been developed for integrin αvβ3 tumor-targeting positron emission tomography (PET) diagnosis. Several c(RGD) pharmacophores, connected with the linker and conjugated to a chelator or precursor for radiolabeling with different PET radionuclides (18F, 64Cu, and 68Ga), have resulted in multimeric ligands superior to c(RGD) monomers. The binding avidity, pharmacodynamic, and PET imaging properties of these multimeric c(RGD) radioligands, in relation to their structural characteristics are analyzed and discussed. Furthermore, specific examples from preclinical studies and clinical investigations are included.  相似文献   
4.
The present work describes the use of Centrifugal Partition Chromatography (CPC) for the bio-guided isolation of repellent active volatile compounds from essential oils. Five essential oils (EOs) obtained from three Pinus and two Juniperus species were initially analyzed by gas chromatography–mass spectrometry (GC/MS) and evaluated for their repellent properties against Aedes albopictus. The essential oil from needles of P. pinea (PPI) presented the higher activity, showing 82.4% repellency at a dose of 0.2 μL/cm2. The above EO, together with the EO from the fruits of J. oxycedrus subsp. deltoides (JOX), were further analyzed by CPC using the biphasic system n-Heptane/ACN/BuOH in ratio 1.6/1.6/0.2 (v/v/v). The analysis of PPI essential oil resulted in the recovery of (−)-limonene, guaiol and simple mixtures of (−)-limonene/β-pheladrene, while the fractionation of JOX EO led to the recovery of β-myrcene, germacrene-D, and mixtures of α-pinene/β-pinene (ratio 70/30) and α-pinene/germacrene D (ratio 65/45). All isolated compounds and recovered mixtures were tested for their repellent activity. From them, (−)-limonene, guaiol, germacrene-D as well the mixtures of (−)-limonene/β-pheladrene presented significant repellent activity (>97% repellency) against Ae. albopictus. The present methodology could be a valuable tool in the effort to develop potent mosquito repellents which are environmentally friendly.  相似文献   
5.
Bottom‐up assembly by dielectrophoresis (DEP) has emerged in recent years as a viable alternative to conventional top–down fabrication of electronic devices from nanomaterials, particularly carbon nanotubes and graphene. Here, we demonstrate how this technique can be extended to fabricate devices containing carbon nanotubes and graphene suspended between two electrodes over a back‐gate electrode. The suspended device geometry is critical for the development of nano‐electromechanical devices and to extract maximum performance out of electronic and optoelectronic devices. This technique allows for parallel assembly of devices over large scale. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   
6.
μ-Opioid receptors (μ-ORs) play a critical role in the modulation of pain and mediate the effects of the most powerful analgesic drugs. Despite extensive efforts, it remains insufficiently understood how μ-ORs produce specific effects in living cells. We developed new fluorescent ligands based on the μ-OR antagonist E-p-nitrocinnamoylamino-dihydrocodeinone (CACO), that display high affinity, long residence time and pronounced selectivity. Using these ligands, we achieved single-molecule imaging of μ-ORs on the surface of living cells at physiological expression levels. Our results reveal a high heterogeneity in the diffusion of μ-ORs, with a relevant immobile fraction. Using a pair of fluorescent ligands of different color, we provide evidence that μ-ORs interact with each other to form short-lived homodimers on the plasma membrane. This approach provides a new strategy to investigate μ-OR pharmacology at single-molecule level.  相似文献   
7.
Germanane (GeH), a germanium analogue of graphane, has recently attracted considerable interest because its remarkable combination of properties makes it an extremely suitable candidate to be used as 2D material for field effect devices, photovoltaics, and photocatalysis. Up to now, the synthesis of GeH has been conducted by substituting Ca by H in a β‐CaGe2 layered Zintl phase through topochemical deintercalation in aqueous HCl. This reaction is generally slow and takes place over 6 to 14 days. The new and facile protocol presented here allows to synthesize GeH at room temperature in a significantly shorter time (a few minutes), which renders this method highly attractive for technological applications. The GeH produced with this method is highly pure and has a band gap (Eg) close to 1.4 eV, a lower value than that reported for germanane synthesized using HCl, which is promising for incorporation of GeH in solar cells.  相似文献   
8.
We introduce an efficient protocol for end-to-end handoff management in heterogeneous wireless IP-based networks. The protocol is based on the stream control transmission protocol (SCTP), and employs a soft-handoff mechanism that uses end-to-end semantics for signaling handoffs and for transmitting control messages. The design goal of this protocol is twofold—first, to reduce the home registration delay, and, second, to eliminate the tunnelling cost which exists in current proposals, such as Mobile IP and its derivatives. Furthermore, we propose successive enhancements to the initial mobility management framework for achieving better scalability. We present strong analytical and simulation-based results that show performance improvements over existing approaches. Antonios Argyriou is a Ph.D. candidate in the school of electrical and computer engineering, Georgia Institute of Technology. He received his M.S. degree from the Georgia Institute of Technology in 2003, and the diploma from Democritus University of Thrace in 2001, both in electrical and computer engineering. His research interests spawn in all aspects of computer networking while specific interests include wireless networks and multimedia communications. He is a student member of IEEE and ACM. Vijay Madisetti is a professor of electrical and computer engineering at the Georgia Institute of Technology. He splits his time among teaching, research and entrepreneurship. His interests are design, prototyping, and packaging of electronic systems, virtual prototyping, embedded software systems, and computer networks. He obtained his Ph.D. in electrical engineering and computer science from the University of California at Berkeley. He is a member of the IEEE and the Computer Society.  相似文献   
9.
The continuous increase of the computational power of programmable processors has established them as an attractive design alternative, for implementation of the most computationally intensive applications, like video compression. To enforce this trend, designers implementing applications on programmable platforms have to be provided with reliable and in-depth data and instruction analysis that will allow for the early selection of the most appropriate application for a given set of specifications. To address this need, we introduce a new methodology for early and accurate estimation of the number of instructions required for the execution of an application, together with the number of data memory transfers on a programmable processor. The high-level estimation is achieved by a series of mathematical formulas; these describe not only the arithmetic operations of an application, but also its control and addressing operations, if it is executed on a programmable core. The comparative study, which is done using three popular processors (ARM, MIPS, and Pentium), shows the high efficiency and accuracy of the methodology proposed, in terms of the number of executed (micro-)instructions (i.e. performance) and the number of data memory transfers (i.e. memory power consumption). Using the proposed methodology we estimated an average deviation of 23% in our estimated figures compared with the measurements taken from the real execution on the CPUs. This work was supported by the project PENED ’99 ED501 funded by GSRT of the Greek Ministry of Development, and the project PRENED ’99 KE 874 funded by the Research Committee of the Democritus University of Thrace. This work was partially sponsored by a scholarship from the Public Benefit Foundation of Alexander S. Onassis (Minas Dasygenis). Nikolaos Kroupis was born in Trikala in 1976. He receiver the engineering degree and Ms.C. degree in Department of Electrical and Computer Engineering from Democritous University of Thrace, Greece, in 2000 and 2002, respectively. Since 2002 he has been a Ph.D. student at the Laboratory of Electrical and Electronic Materials Technology. His research interests are in software/hardware co-design of embedded system for signal processing applications. Nikos D. Zervas received a Diploma in Electrical & Computer Engineering from University of Patras, Greece in 1997. He received the Ph.D. degree in the Department of Electrical and Computer Engineering of the same University in 2004. His research interests are in the area of high-level, power optimization techniques and methodologies for multimedia and telecommunication applications. He has received an award from IEEE Computer Society in the context of Low-Power Design Contest of 2000 IEEE Computer Elements Mesa Workshop. Mr. Zervas is a member of the IEEE, ACM and of the Technical Chamber of Greece. Minas Dasygenis was born in Thessaloniki in 1976. He received his Diploma in Electrical and Computer Engineering in 1999, from the Democritus University of Thrace, Greece, and for his diploma Thesis he was honored by The Technical Chamber of Greece and Ericsson Hellas. In 2005, he received his PhD Degree from the Democritus University of Thrace. His research interests include low-power VLSI design of arithmetic circuits, residue number system, embedded architectures, DSPs, hardware/ software codesign and IT security. He has published more than 20 papers in international journals and conferences and he has been a principal researcher in three European research projects. Konstantinos Tatas received his degree in Electrical and Computer Engineering from the Democritus University of Thrace, Greece in 1999. He received his Ph.D. in the VLSI Design and Testing Center in the same University by June 2005. He has been employed as an RTL designer in INTRACOM SA, Greece between 2000 and 2003. His research interests include low-power VLSI design of DSP and multimedia systems, computer arithmetic, IP core design and design for reuse. Antonios Argyriou received the degree in Electrical and Computer engineering from the Democritous University of Thrace, Greece, in 2001, and the M.S. and Ph.D. degrees in Electrical and Computer engineering from the Georgia Institute of Technology, Atlanta, in 2003 and 2005, respectively. His primary research interests include wireless networks, mobile computing and multimedia communications. He is a member of the IEEE and ACM. Dimitrios Soudris received his Diploma in Electrical Engineering from the University of Patras, Greece, in 1987. He received the Ph.D. Degree in Electrical Engineering, from the University of Patras in 1992. He is currently working as Ass. Professor in Dept. of Electrical and Computer Engineering, Democritus University of Thrace, Greece. His research interests include low power design, parallel architectures, embedded systems design, and VLSI signal processing. He has published more than 140 papers in international journals and conferences. He was leader and principal investigator in numerous research projects funded from the Greek Government and Industry as well as the European Commission (ESPRIT II-III-IV and 5th and 6th IST). He has served as General Chair and Program Chair for the International Workshop on Power and Timing Modelling, Optimisation, and Simulation (PATMOS). He received an award from INTEL and IBM for the project results of LPGD #25256 (ESPRIT IV). He is a member of the IEEE, the VLSI Systems and Applications Technical Committee of IEEE CAS and the ACM. Antonios Thanailakis was born in Greece on August 5, 1940. He received B.Sc. degrees in physics and electrical engineering from the University of Thessaloniki, Greece, 1964 and 1968, respectively, and the Msc. and Ph.D. Degrees in electrical engineering and electronics from UMIST, Manchester, U.K. in 1968 and 1971, respectively. He has been a Professor of Microelectronics in Dept. of Electrical and Computer Eng., Democritus Univ. of Thrace, Xanthi, Greece, since 1977. He has been active in electronic device and VLSI system design research since 1968. His current research activities include microelectronic devices and VLSI systems design. He has published a great number of scientific and technical papers, as well as five textbooks. He was leader for carrying out research and development projects funded by Greece, EU, or other organizations on various topics of Microlectronics and VLSI Systems Design (e.g. NATO, ESPRIT, ACTS, STRIDE).  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号