首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
化学   3篇
无线电   4篇
  2022年   1篇
  2017年   1篇
  2010年   1篇
  2005年   1篇
  2004年   2篇
  2000年   1篇
排序方式: 共有7条查询结果,搜索用时 31 毫秒
1
1.
Neurotoxicity is a serious health problem of patients chronically exposed to arsenic. There is no specific treatment of this problem. Oxidative stress has been implicated in the pathological process of neurotoxicity. Polyphenolics have proven antioxidant activity, thereby offering protection against oxidative stress. In this study, we have isolated the polyphenolics from Acacia nilotica and investigated its effect against arsenic-induced neurotoxicity and oxidative stress in mice. Acacia nilotica polyphenolics prepared from column chromatography of the crude methanol extract using diaion resin contained a phenolic content of 452.185 ± 7.879 mg gallic acid equivalent/gm of sample and flavonoid content of 200.075 ± 0.755 mg catechin equivalent/gm of sample. The polyphenolics exhibited potent antioxidant activity with respect to free radical scavenging ability, total antioxidant activity and inhibition of lipid peroxidation. Administration of arsenic in mice showed a reduction of acetylcholinesterase activity in the brain which was counteracted by Acacia nilotica polyphenolics. Similarly, elevation of lipid peroxidation and depletion of glutathione in the brain of mice was effectively restored to normal level by Acacia nilotica polyphenolics. Gallic acid methyl ester, catechin and catechin-7-gallate were identified in the polyphenolics as the major active compounds. These results suggest that Acacia nilotica polyphenolics due to its strong antioxidant potential might be effective in the management of arsenic induced neurotoxicity.  相似文献   
2.
Receivers are being digitized in a quest for flexibility. Analog filters and programmable gain stages are being exchanged for digital processing at the price of a very challenging ADC. This paper presents an alternative solution where the filter and programmable gain functionality is integrated into a /spl Sigma//spl Delta/ ADC. The novel filtering ADC is realized by adding a high-pass feedback path to a conventional /spl Sigma//spl Delta/ ADC while a compensating low-pass filter in the forward path maintains stability. As such, the ADC becomes highly immune to interferers even if they exceed the maximum allowable input level for the wanted channel. As a consequence, the ADC input range can be programmed dynamically to the level of the wanted signal only. This results in an input-referred dynamic range of 89 dB in 1-MHz bandwidth and an intentionally moderate output signal-to-noise-and-distortion ratio of 46-59 dB (depending on the programmed gain). The merged functionality enables a better overall power/performance balance for the receiver baseband. The design consumes less than 2 mW and active area is 0.14 mm/sup 2/ in a 0.18-/spl mu/m digital CMOS technology.  相似文献   
3.
2-Amino-2-thiazoline derivatives bearing alkyl or aryl substituents at exocyclic nitrogen have been condensed with different isocyanates and isothiocyanates. The addition occurs at ring endocyclic nitrogen in a regiospecific manner to afford kinetic and enthalpy-favored adducts. The unequivocal assignment of these structures has been confirmed by X-ray diffraction analyses of several compounds. The endo adducts do not rearrange on heating with the sole exception of adducts in which the exocyclic nitrogen remains unsubstituted. Trapping experiments in the presence of other isocyanates or isothiocyanates produce the formation of new endo adducts by acyl exchange in the reaction mixture. Semiempirical PM3 calculations full corroborate the higher stability of endo or exo adducts depending on the substitution pattern. The formation of adducts is compatible with a stepwise reaction mechanism, for which semiempirical transition structures could be located in the potential energy surface, and the global energetics of the process have been determined. The formation of the endo adducts proceeds with a smaller activation barrier.  相似文献   
4.
In this paper, a basic cell for low-power and/or low-voltage operation is identified. It is evidenced how different versions of this cell, coined as "flipped voltage follower (FVF)" have been used in the past for many applications. A detailed classification of basic topologies derived from the FVF is given. In addition, a comprehensive list of recently proposed low-voltage/low-power CMOS circuits based on the FVF is given. Although the paper has a tutorial taste, some new applications of the FVF are also presented and supported by a set of simulated and experimental results. Finally, a design example showing the application of the FVF to build systems based on translinear loops is described which shows the potential of this cell for the design of high-performance low-power/low-voltage analog and mixed-signal circuits.  相似文献   
5.
6.
A novel design principle for very low-voltage analog signal processing in CMOS technologies is presented. It is based on the use of quasi-floating gate (QFG) MOS transistors. Similar to multiple input floating gate (MIFG) MOS transistors, a weighted averaging of the inputs accurately controlled by capacitance ratios can be obtained, which is the basic operating principle. Nevertheless, issues often encountered in MIFG structures, such as the initial charge trapped in the floating gates or the gain-bandwidth product degradation, are not present in QFG configurations. Several CMOS circuit realizations using open- and closed-loop topologies, have been designed. They include analog switches, mixers, programmable-gain amplifiers, track and hold circuits, and digital-to-analog converters. All these circuits have been experimentally verified, confirming the usefulness of the proposed technique for very low-voltage applications.  相似文献   
7.

Background

The marine invertebrate starfish was found to contain a novel α-N-acetylgalactosaminidase, α-GalNAcase II, which catalyzes removal of terminal α-N-acetylgalactosamine (α-GalNAc), in addition to a typical α-N-acetylgalactosaminidase, α-GalNAcase I, which catalyzes removal of terminal α-N-acetylgalactosamine (α-GalNAc) and, to a lesser extent, galactose. The interrelationship between α-GalNAcase I and α-GalNAcase II and the molecular basis of their differences in substrate specificity remain unknown.

Results

Chemical and structural comparisons between α-GalNAcase I and II using immunostaining, N-terminal amino acid sequencing and peptide analysis showed high homology to each other and also to other glycoside hydrolase family (GHF) 27 members. The amino acid sequence of peptides showed conserved residues at the active site as seen in typical α-GalNAcase. Some substitutions of conserved amino acid residues were found in α-GalNAcase II that were located near catalytic site. Among them G171 and A173, in place of C171 and W173, respectively in α-GalNAcase were identified to be responsible for lacking intrinsic α-galactosidase activity of α-GalNAcase II. Chemical modifications supported the presence of serine, aspartate and tryptophan as active site residues. Two tryptophan residues (W16 and W173) were involved in α-galactosidase activity, and one (W16) of them was involved in α-GalNAcase activity.

Conclusions

The results suggested that α-GalNAcase I and II are closely related with respect to primary and higher order structure and that their structural differences are responsible for difference in substrate specificities.
  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号