首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
无线电   7篇
  2023年   1篇
  2022年   1篇
  2016年   2篇
  2015年   2篇
  1996年   1篇
排序方式: 共有7条查询结果,搜索用时 7 毫秒
1
1.
采用垂直互连技术研制了一种X波段上下变频多芯片模块,实现了微波单片集成电路和介质基板在三维微波互连结构中的平稳转换、保证了微波信号的有效传输.简要分析了垂直互连对微波传输的影响和解决方法,应用微波仿真软件建立了互联结构的三维电磁场模型,对垂直互连结构进行了仿真优化.实测结果和仿真结果吻合良好.最后在较小尺寸盒体内实现了上变频链路、下变频链路、电源管理、TTL检测四个功能.模块测试结果表明,下变频链路的变频增益大于51 dB,噪声系数小于6 dB,杂散抑制小于65 dBc;上变频链路的变频增益大于9 dB,1 dB压缩点输出功率大于11 dBm,杂散抑制小于55 dBc;模块尺寸为80 mm×42 mm×15 mm,达到了小型化设计要求.  相似文献   
2.
研制了一种小体积的S频段射频收发系统级封装( SIP)模块,内部集成了基于多种工艺的器件。模块接收通道一次变频,发射通道二次变频,内部集成中频和射频本振信号源。模块采用双腔结构,不同腔体之间通过绝缘子进行垂直互连,大大减小了模块体积,模块体积为40 mm×40 mm×10 mm。模块采用正向设计,其主要指标的测试结果为:接收通道动态范围-100~-40 dBm,输出信号0~2 dBm,噪声系数小于等于2.8 dB,带外抑制大于等于50 dBc;发射通道输出信号大于等于2 dBm,二次、三次谐波抑制大于等于60 dBc,杂波抑制大于等于55 dBc,相位噪声在1 kHz和10 kHz处分别小于等于-82 dBc/Hz和-91 dBc/Hz。实测结果与仿真结果基本一致。  相似文献   
3.
研制了一种高集成、高散热、多功能一体化微波收发系统级封装(SiP)模块。该SiP模块工作频率为8.5~10.5 GHz,内部集成高功率放大、功率限幅、低噪声信号放大和预选滤波等功能。采用高热导率AlN基材实现良好散热,并将滤波器设计于多层AlN内部,实现有源器件和无源结构的三维集成。测试结果表明,该SiP模块接收通道增益≥20 dB,限幅功率达到50 W,噪声系数≤2.8 dB;发射通道输出功率≥20 W。SiP模块尺寸仅为10 mm×10 mm×2.65 mm,质量约1 g,具有很好的滤波预选功能,可以广泛应用于T/R组件前端。  相似文献   
4.
基于提升GaAs低噪声放大器(LNA)的抗静电(ESD)能力的需求,且实现器件小型化轻量化,设计了一种S波段GaAs低噪声放大器的ESD防护电路,该电路利用1/4波长线的微波特性,通过1/4波长微带线并联在GaAs芯片的输入输出端,瞬态二极管(TVS)并联在芯片的电源端,不改变器件原有封装尺寸的条件下构成保护结构.基于ESD人体模型,运用静电模拟仪器对低噪声放大器进行了模拟试验,并对其性能进行了测试.结果表明,在6.5 mm×6.5 mm×2.4 mm的封装尺寸下,器件的抗静电能力从250 V提高到了1 000 V,在频率为2.6~3.7 GHz,带内增益大于25 dB,增益平坦度小于-±0.5 dB,噪声系数小于1.5 dB,满足高可靠领域应用的要求.  相似文献   
5.
介绍了多通道接收组件的典型原理框图,给出了通道隔离度、耦合度、移相精度和移相寄生调幅的概念,使用相量法推导了通道耦合度对移相精度和移相寄生调幅影响的计算公式,指出理论上隔离度对移相指标的影响与频率无关。利用软件仿真了通道隔离度对移相精度和移相寄生调幅的影响,得到了与公式计算相同的数值,两者互相得到了验证。提出了改善通道隔离度的方法,设计加工了一种Ka波段的四通道接收组件,改善了通道隔离度,具有较好的移相精度和移相寄生调幅指标。  相似文献   
6.
介绍了TEC温差电致冷组件质量等级集中检测的内容及结果,并对结果进行了分析、评述。  相似文献   
7.
随着射频集成电路向小型化、高集成方向发展,基于金凸点热超声键合的芯片倒装封装因凸点尺寸小、高频性能优越成为主流技术之一。以GaAs芯片上倒装Si芯片的互连金凸点为研究对象,通过有限元仿真方法,分析了温度和剪切力作用下不同高度金凸点的等效应力,得到金凸点的最优高度值。通过正交试验,研究键合工艺参数(压力、保持时间、超声功率、温度)对金凸点高度和键合强度的影响规律。通过可靠性试验,验证了工艺优化后倒装焊结构的可靠性。结果表明:键合工艺参数对凸点高度的影响排序为压力>超声功率>温度>保持时间,对剪切力的影响排序为压力>超声功率>保持时间>温度。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号