首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
化学   4篇
数学   2篇
物理学   3篇
  2022年   1篇
  2019年   1篇
  2016年   1篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2005年   1篇
  1986年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
The crystalline structure of polyamide‐12 (PA12) was studied by solid‐state 13C nuclear magnetic resonance (NMR) as well as by synchrotron wide‐ and small‐angle X‐ray scattering (WAXS and SAXS). Isotropic and oriented PA12 showed different NMR spectra ascribed to γ‐ and γ′‐crystalline modifications, respectively. On the basis of the position of the first diffraction peak, the isotropic γ‐form and the oriented γ′‐form were shown to be with hexagonal crystalline lattice at room temperature. When heated, the two PA12 polymorphs demonstrated different behaviors. Above 140 °C, the isotropic γ‐PA12 partially transformed into α‐modification. No such transition was observed with the oriented γ′‐PA12 phase even after annealing at temperatures close to melting. A γ′–γ transition was observed here only after isotropization by melting point. Various structural parameters were extracted from the WAXS and SAXS patterns and analyzed as a function of temperature and orientation: the degree of crystallinity, the d‐spacings, the Bragg's long spacings, the average thicknesses of the crystalline (lc) and amorphous (la) phases, and the linear crystallinity xcl within the lamellar stacks. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3720–3733, 2005  相似文献   
2.
Building design process is a significantly complex procedure taking into account many different factors and variables, such as the site context, environment, material availability, cost, and function. One of the most complex forms in the built environment is tall building because of the scale, design considerations, and multidisciplinary nature. This article discusses development of ontological model for understanding, presenting, relating, and managing knowledge influencing architectural design of tall buildings. Ontology is a knowledge‐based model that represents certain domain by abstraction of concepts, and a network of relationships and properties describing these concepts. By creating an architectural ontology, the factors, relations, and characteristics in the design process can be clearly defined and presented. The model incorporates physical systems such as structure, building elements, and geometry, as well as environmental effects, social aspects and other complex attributes. © 2009 Wiley Periodicals, Inc. Complexity, 2009  相似文献   
3.
We report thermoelectric measurements on a silicon nanoribbon in which an integrated gate provides strong carrier confinement and enables tunability of the carrier density over a wide range. We find a significantly enhanced thermoelectric power factor that can be understood by considering its behavior as a function of carrier density. We identify the underlying mechanisms for the power factor in the nanoribbon, which include quantum confinement, low scattering due to the absence of dopants, and, at low temperatures, a significant phonon-drag contribution. The measurements set a target for what may be achievable in ultrathin nanowires.  相似文献   
4.
A finite simplicial complex is orderable if its simplices are the chains of a poset. For each closed surface an orderable triangulation is given that is minimal with respect to the number of vertices. The construction of minimal ordered triangulations implies that for each surface S the minimal number of vertices of a bipartite graph, which has a quadrilateral embedding into S, is equal to b(S) = ?4 + (16 – 8χ)1/2?, where χ is the Euler characteristic of S.  相似文献   
5.
The impact of interfaces and heterojuctions on the electronic and thermoelectric transport properties of materials is discussed herein. Recent progress in understanding electronic transport in heterostructures of 2D materials ranging from graphene to transition metal dichalcogenides, their homojunctions (grain boundaries), lateral heterojunctions (such as graphene/MoS2 lateral interfaces), and vertical van der Waals heterostructures is reviewed. Work on thermopower in 2D heterojunctions, as well as their applications in creating devices such as resonant tunneling diodes (RTDs), is also discussed. Last, the focus turns to work in 3D heterostructures. While transport in 3D heterostructures has been researched for several decades, here recent progress in theory and simulation of quantum effects on transport via the Wigner and non‐equilibrium Green's functions approaches is reviewed. These simulation techniques have been successfully applied toward understanding the impact of heterojunctions on transport properties and thermopower, which finds applications in energy harvesting, and electron resonant tunneling, with applications in RTDs. In conclusion, tremendous progress has been made in both simulation and experiments toward the goal of understanding transport in heterostructures and this progress will soon be parlayed into improved energy converters and quantum nanoelectronic devices.  相似文献   
6.
7.
8.
Oriented polymer blends whose major component is high‐density polyethylene (HDPE) are strained until failure. Two‐dimensional (2D) small‐angle X‐ray scattering (SAXS) patterns monitor the nanostructure evolution, which is related to the macroscopic mechanical evolution. Data evaluation methods for high‐precision determination of macroscopic and nanoscopic parameters are presented. The hardest materials exhibit a very inhomogeneous nanodomain structure. During straining, their domains appear to be wedged and inhibit transverse contraction on the nanometer scale. Further components of the blends are polyamide 6 (PA6) or polyamide 12 (PA12) (20–30%) and Yparex® 8102 (YP) as compatibilizer (0–10%). Some HDPE/PA6 blends are additionally loaded with commercial nanoclays (Nanomer® or Cloisite®), the respective amounts being 7.5% and 5% with respect to PA. Blending of HDPE with PA12 causes no synergistic effect. In the absence of nanoclay, PA6 and HDPE form a heterogeneous nanostructure with high macroscopic Young's modulus. After addition of YP a rather homogeneous scaffold structure is observed in which some of the PA6 microfibrils and HDPE crystallites appear to be rigidly connected, but the modulus has decreased. Both kinds of nanoclay induce a transition in the HDPE/PA6 blends from a structure without transverse correlation among the microfibrils into a macrolattice with 3D correlations among the HDPE domains from neighboring microfibrils. In the range of extensions between 0.7 and 3.5%, the scattering entities with 3D correlation show transverse elongation instead of transverse contraction. The process is interpreted as overcoming a correlation barrier executed by the crystallites in an evasion‐upon‐approaching mechanism. During continued straining, the 3D correlation is reduced or completely removed. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 237–250, 2010  相似文献   
9.
Ethyl‐(ECA) and butyl‐2‐cyanoacrylate (BCA) monomers of high purity and acidic stabilization were synthesized and anionically polymerized to homo‐ and copolymers in two different ways: by piperidine‐catalyzed bulk polymerization leading to transparent, brittle films (method A) and by polymerization in aqueous medium in the presence of sodium bicarbonate to obtain white powders (Method B). The molecular structure of the synthesized monomers, homopolymers and copolymers were corroborated by spectral methods. The polymers were studied further by thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC), size exclusion chromatography (SEC) and proton nuclear magnetic resonance (1H NMR). Controlling the composition of the monomer feed and the way the polymerization was performed, it was possible to obtain phase separated or homogeneous cyanoacrylate copolymers with glass transitions varying between the Tg of polyECA and that of polyBCA. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5142–5156, 2008  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号